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PROJECTIVE PLANES AND THEIR LOOK-ALIKES

LINUS KRAMER

Abstract
We classify all closed topological manifolds which have the same integral
homology as a projective plane.

In this paper we classify manifolds which look like projective planes.
More precisely, we consider 1-connected closed topological manifolds M
with integral homology

H•(M) ∼= Z3.

A straight-forward application of Poincaré duality shows that for such
a manifold there exists a number m ≥ 2 such that Hk(M) = Z, for
k = 0,m, 2m; in particular, dim(M) = 2m is even. It follows from
Adams’ Theorem on the Hopf invariant that m divides 8.

We construct a family of topological 2m-manifolds M(ξ) which are
Thom spaces of certain topological Rm-bundles (open disk bundles) ξ
over the sphere Sm, for m = 2, 4, 8, and which we call models. This idea
seems to go back to Thom and was exploited further by Shimada [53]
and Eells-Kuiper [14]. A particular case is worked out in some detail
in Milnor-Stasheff [46, Ch. 20]. However, these authors used vector
bundles instead of Rm-bundles. We will see that the non-linearity of
Rm-bundles yields many more manifolds than the construction by Eells-
Kuiper. In [14, p. 182], the authors expressed the hope that “the given
combinatorial examples form a complete set [...] for n �= 4”. Our results
show that in dimension n = 2m = 16, their construction missed 27/28
of the (infinitely many) combinatorial and topological solutions, while
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in dimension n = 8, they obtained all combinatorial, but only half of
the topological solutions.

Next, we determine certain characteristic classes of our models, and
in particular their rational Pontrjagin classes. Using these characteris-
tic classes and Wall’s surgery sequence, we show that for m �= 2, every
manifold which looks like a projective plane is homeomorphic to one
of our models. Thus, we obtain a complete homeomorphism classifi-
cation of all manifolds which are like projective planes. Furthermore,
we determine which models admit DIFF (or PL) structures. The case
m = 2 (so dim(M) = 4) is different, but there, we can apply Freedman’s
classification of closed 4-manifolds.

We also classify the homotopy types of 1-connected Poincaré duality
complexes X with H•(X) ∼= Z3. This homotopy-theoretic version of our
main result (which was already proved in Eells-Kuiper [14]) is needed
in the course of the homeomorphism classification; since the methods
here are somewhat different from the rest of the paper, I put it in an
appendix.

Main results.

Let M be a 1-connected closed topological manifold which looks like
a projective plane, i.e., H•(M) ∼= Z3. Then dim(M) = 2m = 4, 8, 16.

If m = 2, then M is homeomorphic to the complex projective plane
CP2 or to the Chern manifold Ch4. These two manifolds are topolog-
ically distinguished by their Kirby-Siebenmann numbers ks[M ] ∈ Z/2;
the Chern manifold (ks[Ch4] �= 0) admits no DIFF structure (this case
is due to Freedman [19]).

If m = 4, then M is homeomorphic to one of our models M(ξ).
Topologically, it is determined by the Pontrjagin number p24[M ] ∈ {2(1+
2t)2 | t ∈ Z} and the Kirby-Siebenmann number ks2[M ] ∈ Z/2. These
data also determine the oriented bordism class of M , so no two mod-
els are equivalent under oriented bordism. The manifold admits a PL
structure (unique up to isotopy) if and only if ks2[M ] = 0.

If m = 8, then M is homeomorphic to one of our models M(ξ).
Topologically, it is determined by the Pontrjagin number

p28[M ] ∈
{

36
49

(1 + 2t)2 | t ∈ Z

}
and a characteristic number 7

6p8κ[M ] ∈ Z/4, determined by the integral
characteristic class 7

6p8(M) and a certain 8-dimensional PL characteris-
tic class κ with Z/4-coefficients. These data also determine the oriented
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bordism class of M , so no two models are equivalent under oriented bor-
dism. These manifolds admit a PL structure (unique up to isotopy).

We determine also which of these manifolds admit a DIFF structure,
and determine the homotopy type in terms of the characteristic classes.
See Sections 7 and 8 for more detailed statements. As a by-product of
our proof, we obtain an explicit classification of Rm-bundles over Sm in
terms of characteristic classes, for m = 2, 4, 8.

* * *

Topological geometry plays no rôle in this paper. However, the moti-
vation to write it came from a long-standing open problem in topological
geometry:

(∗) What are the possible homeomorphism types of the point spaces of
compact projective planes (in the sense of Salzmann [52])?

The point space P of a compact projective plane is always the Thom
space of a locally compact fiber bundle, see Salzmann et al. [52] Ch. 5,
in particular 51.23. (Problem (∗) should not be confused with the ge-
ometric problem of classifying all compact projective planes with large
automorphism groups which was solved by Salzmann and his school
[52].)

Now (∗) turns out to be a difficult problem. The present state of
affairs is as follows, see [52]. Let P be the point space of a compact
projective plane. If the covering dimension of P is dim(P ) = 0, then
P is either finite or homeomorphic to the Cantor set {0, 1}N. If 1 ≤
dim(P ) ≤ 4, then P ∼= RP2 or P ∼= CP2; this was proved by Salzmann
and Breitsprecher already in the late 60s [7] (surprisingly, this did not
require results about 4-manifolds). The proof depends on a result by
Borsuk about low-dimensional ANRs and on Kneser’s Theorem SO(2) 

STOP(2). In (finite) dimensions bigger than 4, Löwen [40] applied sheaf-
theoretic cohomology to the problem. Using a beautiful local-to-global
argument, he proved that P is an m − 1-connected Poincaré duality
complex and an integral 2m-dimensional ENR manifold with H•(P ) ∼=
Z3, and that m = 2, 4, 8.

So the topological problem (∗) is reduced to the following steps:

(1) Prove that the topological dimension dim(P ) is finite.

(2) Assuming that dim(P ) < ∞, prove that P is a manifold (and not
just an integral ENR manifold).
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(3) Assuming that P is a manifold, determine its homeomorphism
type.

Each step seems to be difficult. Under the additional assumption
that the compact projective plane is smooth (in the sense of [52]: the
geometric operations are smooth maps), a complete homeomorphism
classification (based on characteristic classes) of the point spaces was
carried out in [36]. Buchanan [9] determined the homeomorphism types
of the point spaces of compact projective planes coordinatized by real
division algebras by a direct homotopy-theoretic argument (note that
besides the classical alternative division algebras R, C, H, and O, there
exists a continuum of other real division algebras). In both cases, the
homeomorphism types of the point spaces turn out to be the classical
ones, RP2, CP2, HP2, or OP2. My hope is that the results in this paper,
together with Knarr’s Embedding Theorem [35] and the result in [37]
will eventually lead to a solution of (3).

* * *

I have tried to make the paper self-contained and accessible to non-
experts. There is necessarily a certain overlap with the paper by Eells-
Kuiper [14]. My aim was to give complete proofs for all steps of the
classification, starting only from general facts about bundles and mani-
folds. Thus, the reader is not assumed to be familiar with [14] (although
this fundamental paper is certainly to be recommended).

Standing assumptions. An n-manifold (without boundary) is a
metrizable, second countable space which is locally homeomorphic to
Rn. Throughout, all maps are assumed to be continuous. Except for
the appendix, maps and homotopies are not required to preserve base
points, unless the contrary is stated explicitly. Thus [X;Y ] denotes the
set of all free homotopy classes of maps from X to Y . If X,Y are well-
pointed spaces, and if Y is 0-connected, then the fundamental group
π1(Y ) acts on the set [X;Y ]0 of based homotopy classes; the set [X;Y ]
of all free homotopy classes can be identified with the orbit set of this
action, see Whitehead [66] Ch. III.1. If Y is an H-space (or if Y is
1-connected) this action is trivial, so [X;Y ] = [X;Y ]0.

Acknowledgements. I am indebted to Stephan Stolz and Michael
Weiss for sharing some of their insights.
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1. Preliminaries on bundles

Fiber bundles, microbundles, fibrations, and Thom spaces play a
prominent rôle in this paper, so we briefly recall the relevant notions.
We refer to Holm [26], Milnor [43], Dold [11], and to the books by
Kirby-Siebenmann [33], Rudyak [50], and Husemoller [30].

1.1. A bundle φ = (E,B, p) over a space B is a map E
p✲ B.

The class of all bundles over B forms in an obvious way a category
whose morphisms φ

f✲ φ′ are commutative diagrams

E′ f✲ E

B

p′
❄

==== B.

p
❄

An isomorphism in this category is called an equivalence of bundles and
denoted φ ∼= φ′; in the diagram above, f is an equivalence if and only if
f is a homeomorphism. The categorical product of two bundles φ, φ′ is
the Whitney sum φ ⊕ φ′; its total space is E ⊕ E′ = {(e, e′) ∈ E × E′ |
p(e) = p′(e′)}, with the obvious bundle projection. A homotopy between
two morphisms f0, f1 : φ′ ✲✲ φ or homotopy over B is a homotopy
E′ × [0, 1] ✲ E with the property that the diagram

E′ ft✲ E

B
❄

===== B
❄

commutes for all t ∈ [0, 1]. A morphism f is called a fiber homotopy
equivalence if it has a homotopy inverse bundle map g, i.e., if fg and
gf are homotopic over B to the respective identity maps; in this case
we write φ 
 φ′. A section of a bundle φ = (E,B, p) is a morphism s
from the identity bundle (B,B, idB) to φ,

E

�
�
�s ✒

B ==== B.

p
❄

and we call (E,B, p, s) a sectioned bundle.
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A map B′ g✲ B induces a contravariant functor g∗ which assigns
to every bundle φ = (E,B, p) the pull-back bundle g∗φ = (g∗E,B′, p′),
with g∗E = {(e, b′) ∈ E × B′ | p(e) = g(b′)} and p′(e, b′) = b′. If g is
a homeomorphism, then g∗ is an equivalence of categories; in this case,
two bundles φ and φ′ are called weakly equivalent if φ′ is equivalent to
g∗φ, in other words, if there are homeomorphisms

E′ f
∼=

✲ E

B′

p′
❄ g

∼=
✲ B

p
❄

commuting with the bundle projections; such a weak equivalence is
denoted φ ∼=g φ′.

1.2. A bundle is called a fibration if the homotopy extension prob-
lem

X × {0} f✲ E

...
...

.
✒

X × [0, 1]
❄

∩

g✲ B

p
❄

has a solution for every space X. We call a fibration n-spherical if every
fiber Eb = p−1(b) has the homotopy type of an n-sphere.

For a subspace A ⊆ B, we have the restriction φ|A = (EA =
p−1(A), A, p|EA

) of the bundle φ.

Definition 1.3. A bundle is called a fiber bundle with typical fiber
F if every b ∈ B has an open neighborhood U such that the restriction
φ|U is equivalent to the product (or trivial) bundle (F × U,U,pr2)

F × U ∼=
✲ EU

⊂ ✲ E

U

pr2
❄

====== U
❄

⊂ ✲ B;
❄

such a local trivialization is also called a coordinate chart for the bundle.
If in addition a base point is fixed in the fiber F , one obtains in an
obvious way a sectioned fiber bundle.
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For technical reasons, it is often convenient to consider numerable
fiber bundles. For example, every numerable fiber bundle is automati-
cally a fibration, see Spanier [55] Ch. 2.7 Theorem 12.

Definition 1.4. A locally finite covering {Vi | i ∈ I} of B by
open sets is called numerable if there exist maps fi : B ✲ [0, 1] with
f−1
i ((0, 1]) = Vi, such that

∑
i∈I fi = 1. A fiber bundle is called numer-

able if there exists a numerable covering of B by coordinate charts. In
our setting, most base spaces will be paracompact, so fiber bundles are
automatically numerable.

Definition 1.5. An n-sphere bundle is a numerable fiber bundle
with Sn as typical fiber. An Rn-bundle is a sectioned numerable bundle
with (Rn, 0) as typical fiber; the section is denoted s0 and called the zero-
section. The trivial Rn-bundle (over any space) will be denoted Rn; its
total space is E = Rn×B, with p = pr2. An n-dimensional vector bundle
is an Rn-bundle which carries in addition a real vector space structure
on each fiber which is compatible with the given coordinate charts. Two
Rn-bundles (or vector bundles) ξ, ξ′ are called stably equivalent if there
is an equivalence ξ ⊕ Rk ∼= ξ′ ⊕ Rk′ , for some k, k′ ≥ 0.

A crucial property of Rn-bundles is the following homotopy property.

Lemma 1.6. Let ξ be an Rn bundle over B. If g0, g1 : B′ ✲✲ B
are homotopic, then there is an equivalence g∗0ξ ∼= g∗1ξ.

Proof. See Holm [26] Lemma 1.5. q.e.d.

1.7. In an Rn-bundle ξ = (E,B, ps0), the zero-section s0 is
a homotopy inverse to the bundle projection p, and s(B) is a strong
deformation retract of the total space E, see Holm [26] Theorem 3.6.
In particular, the section s0 : B ✲ E is a cofibration. It follows that
the quotient E/s0(B) is contractible.

Definition 1.8. From each Rn-bundle ξ, one obtains an n-sphere
bundle sξ by compactifying each fiber of ξ. The resulting bundle sξ has
two sections, the zero-section s0 and the section s∞ corresponding to
the new points added in the fibers. Let E denote the total space of ξ,
and put E0 = E \ s0(B), the total space with the zero-section removed.
Finally, let uE = E0∪s∞(B). Then clearly, uξ = (uE,B,u p, s∞) is again
an Rn-bundle (called the upside down bundle in [37]), and E0

✲ B is a
numerable fiber bundle with Rn \ 0 as typical fiber. We call E0

✲ B
the spherical fibration corresponding to the Rn-bundle ξ. The Thom
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space M(ξ) of an Rn-bundle ξ is the quotient

M(ξ) = E ∪ s∞(B)/s∞(B) = E ∪ {o}.

We denote the base point (the tip) of M(ξ) by o. If B is compact,
then M(ξ) = E ∪ {o} is the same as the one-point compactification of
E.

1.9. By the previous remarks, o is a strong deformation retract
of E0 ∪ {o}. In particular, there is a natural (excision) isomorphism
H•(E,E0) ∼= H•(M(ξ), o).

We need also the concept of a microbundle, see Milnor [43] and Holm
[26].

Definition 1.10. An n-microbundle x = (E,B, p, s) is a sectioned
bundle, subject to the following condition: for every b ∈ B there exists
an open neighborhood U of b, an open subset V ⊆ EU = p−1(U) contain-
ing s(U) and a section-preserving homeomorphism h : U × Rn ✲ V
such that the diagram

Rn × U
h✲ V ⊂ ✲ EU

⊂ ✲ E

U

pr2
❄

====== U
❄

===== U
❄

⊂ ✲ B;
❄

commutes. The difference between a microbundle and an Rn-bundle is
that h need not be surjective onto EU . Similarly as for Rn-bundles, we
require the existence of a numerable covering of B by such local charts.

Clearly, every Rn-bundle is an n-microbundle. It is also clear that
there exist microbundles which are not fiber bundles. A particularly
important example is the tangent microbundle tM of a manifold M :
here, E = M × M , the bundle projection is pr2 and the section is the
diagonal map, s(x) = (x, x), see Milnor [43] Lemma 2.1.

The Kister-Mazur Theorem (see Theorem 1.11 below) says that mi-
crobundles are in a sense equivalent to Rn-bundles, a fact which is not
obvious at all. If E′ ⊆ E is a neighborhood of s(B), then it is not diffi-
cult to see that E′ ✲ B is again a microbundle x′ contained in x. Two
microbundles x1, x2 over the same base B are called micro-equivalent if
they contain microbundles x′1, x′2 which are equivalent as bundles (this
is also sometimes called a micro-isomorphism or an isomorphism germ).
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In the case of numerable microbundles one has to be careful: a mi-
crobundle contained in a numerable microbundle need a priori not be
numerable.

Theorem 1.11 (Kister-Mazur). Let x be a numerable n-micro-
bundle. Then there exists a numerable microbundle x′ contained in x

which is an Rn-bundle, and x′ is unique up to equivalence.

Proof. See Holm [26] Theorem 3.3. q.e.d.

In particular, the tangent microbundle tM of any (metrizable) n-
manifold M contains an Rn-bundle, unique up to equivalence. We will
call this Rn-bundle τM (and any bundle equivalent to it) the tangent
bundle of M . If M happens to be a smooth manifold, one can show
that τM is equivalent to the smooth tangent bundle TM , see Milnor
[43] Theorem 2.2.

If ξ is an Rn-bundle over a manifold B, then the total space E
is clearly a manifold, and the zero-section s0(B) is a submanifold with
normal (micro) bundle ξ, see Milnor [43] Sec. 5. We require the following
splitting result.

Proposition 1.12. There is an equivalence

s∗0τE ∼= τB ⊕ ξ.

Proof. This follows from Milnor [43] Theorem 5.9, combined with
the Kister-Mazur Theorem 1.11 above. q.e.d.

2. Constructing the models

In this section we construct a family of manifolds as Thom spaces of
Rm-bundles over the sphere Sm, for m = 2, 4, 8, which we call models.
We begin with some general remarks about Thom spaces of Rm-bundles
over Sm. We fix a generator [Sm] ∈ Hm(Sm). Let ξ be an Rm-bundle
over Sm, for m ≥ 2, with total space E, and let E0 = E \ s0(Sm)
denote the total space with the zero-section removed. Since Sm is 1-
connected, the bundle ξ is orientable, and we may choose an orientation
class u(ξ) ∈ Hm(E,E0), see Spanier [55] Ch. 5.7 Corollary 20. The
image e(ξ) = s•0(u(ξ)|E) of u(ξ) in Hm(Sm) is the Euler class of ξ. We
call the integer

|e| = |〈e(ξ), [Sm]〉|
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the absolute Euler number of ξ; it is independent of the choice of [Sm]
and of u(ξ). Let M(ξ) denote the Thom space of ξ, and let

Φ : H•(B)
∼=✲ H•+m(E,E0), Φ(v) = p•(v)(u(ξ)

denote the Gysin-Thom isomorphism, see Spanier [55] Ch. 5.7 Theo-
rem 10. By 1.9, this yields — via excision — isomorphisms

H•(Sm) ∼= H•+m(E,E0) ∼= H•+m(M(ξ), o).

Let ym, y2m be generators for the infinite cyclic groups Hm(M(ξ)) and
H2m(M(ξ)), respectively.

Lemma 2.1. In the cohomology ring H•(M(ξ)), we have the re-
lation y2m = ±|e|y2m.

Proof. Let x ∈ Hm(Sm) be the generator dual to [Sm] and let Φ
denote the Gysin-Thom isomorphism. Thus Φ(1) = u(ξ) = ±ym and
Φ(x) = ±y2m. Let e(ξ) = εx, for ε ∈ Z (so |e| = |ε|). Then Φ(e(ξ)) =
εΦ(x) = u(ξ)(u(ξ), since p•(e(ξ)) = u(ξ)|E . q.e.d.

2.2. If m is odd, then u(ξ) ( u(ξ) = 0, so e(ξ) = 0. Therefore,
|e| = 0 if m is odd.

Proposition 2.3. If M(ξ) is a manifold, then |e| = 1 and m
is even and divides 8. Moreover, H•(M(ξ);R) ∼= R[ym]/(y3m) for any
commutative ring R.

Proof. If M(ξ) is a manifold with fundamental class µ, then Poincaré
duality implies that the map

Hm(M(ξ)) ⊗ Hm(M(ξ)) ✲ Z, u ⊗ v �−→ 〈u(v, µ〉

is a duality pairing, so |e| = 1 and m is even. Thus H•(M(ξ);R) ∼=
R[ym]/(y3m) for any commutative ring R. Since M(ξ) is a manifold,
it is an ANR, see Hanner [21] Theorem 3.3 or Hu [28] p. 98 and thus
homotopy equivalent to a CW-complex X, see Weber [65] p. 218; by
standard obstruction theory, X 
 Sm ∪ e2m is homotopy equivalent to
a 2-cell complex, see Wall [63] Proposition 4.1. By Adams-Atiyah [2]
Theorem A, this implies that m = 2, 4, 8. More details can be found in
the appendix. q.e.d.

The exact homotopy sequence of the m − 1-spherical fibration E0
✲ Sm shows that π1(E0) is abelian, and that E0 is m − 2-connected.
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For |e| = 1, the Gysin sequence

✲ Hk(E0) ✲ Hk(Sm)
e(ξ)�✲ Hk−m(Sm) ✲ Hk−1(E0) ✲

breaks down into isomorphisms H0(E0) ∼= H0(Sm) and Hm(Sm) ∼=
H2m−1(E0), and all other homology groups of E0 vanish. A repeated
application of the Hurewicz isomorphism shows that E0 is 2(m − 1)-
connected, with π2m−1(E0) ∼= H2m−1(E0) ∼= Z. Thus

Hk(E0 ∪ {o}, E0) ∼= H̃k−1(E0) ∼=
{

Z for k = 2m
0 else,

because E0 ∪ {o} is contractible. In other words, M(ξ) has for |e| = 1
the same local homology groups at o as R2m.

Recall that, due to the embeddability of second countable finite di-
mensional metric spaces, a locally compact finite dimensional second
countable ANR (absolute neighborhood retract for the class of metric
spaces see Hu [28]) is exactly the same as an ENR (Euclidean neighbor-
hood retract, see Hurewicz-Wallman [29] Ch. V, Engelking [17] Theorem
1.11.4, and Dold [13] Ch. IV.8).

Lemma 2.4. For |e| = 1, the Thom space M(ξ) = E ∪ {o} is
an integral ENR 2m-manifold, i.e., an ENR (Euclidean neighborhood
retract) which has the same local homology groups as R2m.

Proof. The space E ∪ s∞(Sm) is a 2m-manifold (and in particular
an ENR), and M(ξ) = E ∪ {o} = E ∪ s∞(Sm)/s∞(Sm) is a quotient of
an ENR (the manifold E ∪ s∞(Sm)) by a compact ENR subspace (the
m-sphere s∞(Sm)). Such a quotient is again an ENR, see Hanner [21]
Theorem 8.2 or Hu [28] Ch. IV. The local homology groups at o were de-
termined above; every point in E has a locally Euclidean neighborhood
and thus the same local homology groups as R2m. q.e.d.

Our next aim is to show that M(ξ) is in fact a manifold. Since
M(ξ) = E ∪ {o} and E is a manifold, the only point which we have to
consider in detail is o. First, we prove that o is 2(m−1)-LC in M(ξ), i.e.,
that every open neighborhood V of o contains an open neighborhood V ′

of o such that for k ≤ 2(m−1), every map Sk ✲ V ′\{o} is homotopic
in V \ {o} to a constant map. Clearly, we are done if we can show that
V ′ \ {o} is 2(m − 1)-connected.

Lemma 2.5. The space M(ξ) is 2(m − 1)-LC at o if |e| = 1.
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Proof. Let uE = E0 ∪ s∞(Sm) denote the upside-down bundle
obtained from ξ (see Definition 1.8). Then uE ✲ Sm is an Rm

bundle and in particular a microbundle (see Definition 1.10). Let V
be an open neighborhood of o in M(ξ), and let f denote the map
uE ✲ E0 ∪ {o} ⊆ M(ξ) which collapses the s∞-section to the point
o. Then U = f−1(V ) is an open neighborhood of s∞(Sm) in the upside-
down bundle uE. By the Kister-Mazur Theorem 1.11, there exists an
open neighborhood U ′ of s∞(Sm) in U with uE ⊇ U ⊇ U ′, such that
U ′ ✲ Sm is an Rm-bundle equivalent to uE ✲ Sm. In particular,
U ′\s∞(Sm) ∼= E0 is 2(m−1)-connected. Now we put V ′ = f(U ′). q.e.d.

Corollary 2.6. For |e| = 1, the Thom space M(ξ) is a 1-connected
closed 2m-manifold.

Proof. The space M(ξ) \ {o} is a 2m-manifold, and M(ξ) is 1-LC
at o. Thus, o has an open neighborhood homeomorphic to R2m; for
m = 2, this follows from Freedman-Quinn [20] Theorem 9.3A (and also
from Kneser’s Theorem TOP(2) 
 O(2), see Theorem 6.4 below), and
for m = 4, 8 from Quinn [49] Theorem 3.4.1. Van Kampen’s Theorem,
applied to the diagram

E0

✠�
�
� ❅

❅
❅❘

E E0 ∪ {o}
❅
❅
❅❘ ✠�

�
�

M(ξ)

shows that π1(M(ξ)) = 0, because E, E0∪{o}, and E0 are 1-connected.
q.e.d.

Definition 2.7. The manifolds M(ξ) obtained in this way as Thom
spaces of Rm-bundles with |e| = 1 will be called models.

The same argument as above shows that E/s0(Sm) is a manifold,
and so S = M(ξ)/s0(Sm) is a manifold, too. Similarly as above, Van
Kampen’s Theorem shows that S is 1-connected. As E0 has the same
homology as S2m−1, the exact homology sequence of the pair (E,E0)

shows that the composite Sm
s0✲ E ✲ (E,E0) is an isomorphism

in m-dimensional homology. Thus H̃•(S) ∼= H•(M(ξ), s0(Sm)) (here
we use that s0 : Sm ✲ M(ξ) is a cofibration). Therefore, S is a
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1-connected homology 2m-sphere, and thus, by the proof of the gener-
alized Poincaré conjecture in higher dimensions, a sphere (in dimension
4, see Freedman [19], and in higher dimension Smale [54] and Newman
[47]). In particular, E0 ∪ {o} ∼= R2m is an open cell. Thus, M(ξ) is a
compactification of an open 2m-cell by an m-sphere.

Proposition 2.8. Each model M(ξ) can be decomposed as

M(ξ) = X ∪̇ U,

with X = s0(Sm) homeomorphic to Sm, and U = E0 ∪ {o} open, dense,
and homeomorphic to R2m.

3. Homeomorphisms between different models

In the last section, we constructed for every oriented Rm-bundle ξ
over Sm with absolute Euler number |e| = |〈e(ξ), [Sm]〉| = 1 a manifold
M(ξ). In this section, we determine under which conditions there are
homeomorphisms M(ξ) ∼= M(ξ′) between different models. Clearly, a
weak bundle equivalence ξ ∼=g ξ′ induces a homeomorphism M(ξ) ∼=
M(ξ′) between the Thom spaces. We will see that this is in fact the
only possibility. In the first part of this section, we assume only that m
is even; in the second part, we return to the special case of our models
where m = 2, 4, 8 and |e| = 1.

Let ξ be an Rm-bundle over Sm, with absolute Euler number |e|, for
m ≥ 2 even. Let X = s0(Sm) ⊆ E. By Proposition 1.12, the tangent
bundle τE of the manifold E splits along X as a sum of a horizontal
and a vertical bundle. Since τSm ⊕ R ∼= Rm+1, we have the following
result.

Lemma 3.1. Let τE denote the topological tangent bundle of E,
and let X = s0(Sm). Then X ⊆ E is an embedded submanifold with
normal bundle weakly equivalent to ξ and

ξ ⊕ τSm ∼= s∗0τE.

In particular, ξ and τE|X are weakly stably equivalent,

ξ ⊕ Rm+1 ∼= s∗0τE ⊕ R.

Suppose now that there is a homeomorphism E
f

∼=
✲ E′ of total

spaces of Rm bundles ξ, ξ′ over Sm, for m ≥ 2 even. Both s0 and f−1s′0
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represent generators of πm(E) ∼= Z. Thus, there exists a homeomor-
phism g : Sm ✲ Sm of degree ±1 such that the diagram

E
f
∼=

✲ E′

Sm

s0

✻

g
∼=

✲ Sm

s′0

✻

is homotopy commutative. By Lemma 1.6, there is an equivalence
s∗0τE ∼= g∗(s′0)∗τE′, whence ξ ⊕ Rm+1 ∼= g∗ξ′ ⊕ Rm+1. In other words,
the bundles ξ and ξ′ are weakly stably equivalent.

Lemma 3.2. Suppose that there is a homeomorphism of Thom
spaces M(ξ) ∼= M(ξ′). Then there is a homeomorphism between the
total spaces E ∼= E′, and the bundles ξ, ξ′ have the same absolute Euler
number.

Proof. By Lemma 2.1, the absolute Euler number can be seen from
the cohomology ring of M(ξ), so |e| = |e′|. If M(ξ) and M(ξ′) are
manifolds, then they are homogeneous and the existence of a homeo-
morphism M(ξ) ∼= M(ξ′) implies the existence of a homeomorphism
E ∼= E′. If M(ξ) and M(ξ′) are not manifolds, then a homeomorphism
maps the unique non-manifold point o of M(ξ) onto the unique non-
manifold point o′ of M(ξ′), and so it maps E onto E′. q.e.d.

The proof of the next proposition involves classifying spaces, so we
postpone it to 6.3.

Proposition 3.3. Let ξ, ξ′ be Rm-bundles over Sm, for m ≥ 2
even. Suppose that there is a stable equivalence ξ ⊕ Rk ∼= ξ′ ⊕ Rk, and
that the absolute Euler numbers of ξ and ξ′ are equal, |e| = |e′|. Then
there is an equivalence ξ ∼= ξ′.

Combining these results, we obtain a complete homeomorphism clas-
sification of the Thom spaces M(ξ), for m ≥ 2 even, in terms of bundles.

Proposition 3.4. Let m ≥ 2 be even, let ξ, ξ′ be Rm-bundles over
Sm. If there is a homeomorphism between the Thom spaces M(ξ) ∼=
M(ξ′), then ξ and ξ′ are weakly equivalent.

Proof. By Lemma 3.2 above, the total spaces E,E′ are homeomor-
phic, and |e| = |e′|. The remarks at the begin of this section show that
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there is a weak equivalence between ξ⊕Rm+1 and ξ′⊕Rm+1, induced by
a homeomorphism g : Sm ✲ Sm. If deg(g) = 1, then g is homotopic
to the identity, whence ξ ⊕ Rm+1 ∼= ξ′ ⊕ Rm+1. By Proposition 3.3, this
implies that there is an equivalence ξ ∼= ξ′. Otherwise, deg(g) = −1 and
we put ξ′′ = g∗ξ′. Then we have an equivalence ξ ⊕ Rm+1 ∼= ξ′′ ⊕ Rm+1,
and, again by Proposition 3.3, an equivalence ξ ∼= ξ′′. But ξ′ is weakly
equivalent to ξ′′. q.e.d.

Thus we have reduced the homeomorphism classification of our mod-
els to a classification of Rm-bundles over Sm. For the specific values
m = 2, 4, 8, this classification will be carried out in the next section. We
end this section with some simple remarks about characteristic classes
of our models. Each model M(ξ) has a distinguished orientation: if ym
is any generator of Hm(M(ξ)), then y2m is a generator of H2m(M(ξ))
which does not depend on the choice of ym. So we choose for our models
the fundamental class [M(ξ)] ∈ H2m(M(ξ)) in such a way that

〈y2m, [M(ξ)]〉 = 1.

Obviously, the Euler characteristic of any model M(ξ) is

χM(ξ) = 3.

Note also that any homeomorphism c : Sm ✲ Sm of degree −1 induces
a homeomorphism fc of M(ξ) with the property that f•

c ym = −ym.
Thus every graded automorphism of the cohomology ring H•(M(ξ)) ∼=
Z[ym]/(y3m) is induced by a homeomorphism.

Recall that the Wu classes vi ∈ H i(M ; Z/2) of a closed manifold M
are defined by 〈vi ( x, [M ]〉 = 〈Sqix, [M ]〉.

Lemma 3.5. The total Stiefel-Whitney class of any model M(ξ) is
given by

w(M(ξ)) = 1 + ym + y2m,

where ym ∈ Hm(M(ξ); Z/2) is a generator. Thus the minimal codimen-
sion for an embedding of M(ξ) in S2m+k or R2m+k is k = m + 1.

Proof. We have Sqm ym = y2m, so the total Wu class of M(ξ) is
v = 1 + ym + y2m, and the total Stiefel-Whitney class is w(M(ξ)) =
Sq v = 1 + ym + y2m (see Spanier [55] Ch. 6.10 Theorem 7 and 6.10 8).
The non-embedding result follows as in Spanier [55] Ch. 6.10 24. q.e.d.
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Recall from 1.7 that the composite Sm
s0✲ X ⊆ E is a homotopy

equivalence. Since E0 is 2(m − 1)-connected, the exact homology se-
quence of the pair (E,E0) shows that Hm(E) ✲ Hm(E,E0) is an
isomorphism.

Lemma 3.6. The map s0 : Sm ✲ M(ξ) induces an isomorphism
on the homotopy and (co)homology groups up to (and including) dimen-
sion m.

Proof. Since M(ξ) is 1-connected, the claim on the homotopy groups
follows from the corresponding result for the homology groups by the
Hurewicz isomorphism. q.e.d.

3.7. In particular, if γ(M) is a stable m-dimensional characteristic
class of the tangent bundle of M(ξ) then s•0(γ(M)) = γ(ξ). For m = 4, 8,
this applies in particular to the m-dimensional rational Pontrjagin class
pm of (the tangent bundle of) M(ξ),

pm(ξ) = s•0pm(M(ξ)),

so the m-dimensional Pontrjagin class of ξ determines the m-dimensi-
onal Pontrjagin class of M(ξ). A similar result holds for the exotic
classes, the Kirby-Siebenmann class ks and the class κ of M , which are
constructed in 4.13. This will be used in the Section 4.

4. Characteristic classes

To get further, we need some results about classifying spaces. We re-
fer to the books by Milnor-Stasheff [46], Kirby-Siebenmann [33], Madsen-
Milgram [41] and to Ch. IV in Rudyak [50]. We denote the orthogonal
group by O(n), and by TOP(n) the group of all base-point preserv-
ing homeomorphisms of Rn. The corresponding classifying spaces are
BO(n) and BTOP(n). If X is any space, then the set of free homotopy
classes [X; BO(n)] is in one to one correspondence with the equivalence
classes of numerable n-dimensional vector bundles over X. Similarly,
BTOP(n) classifies numerable Rn-bundles over X. Taking the limit
n � 1 one obtains stable versions O, TOP of these groups; there are cor-
responding classifying spaces BO and BTOP which classify Rn-bundles
up to stable equivalence. We need two more classifying spaces. The
space BPL(n) classifies Rn-bundles (over simplicial complexes) which
admit PL (piecewise linear) coordinate charts. To us, the main purpose
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of BPL(n) and its stable version BPL will be the fact that it lies some-
what in the middle between BTOP and BO. Finally, let G(n) denote the
semigroup of all self-equivalences of the sphere Sn−1. The corresponding
classifying space BG(n) classifies n − 1-spherical fibrations up to fiber
homotopy equivalence. There are 1-connected coverings of these spaces
which classify oriented bundles and fibrations: for example, the classify-
ing space BSO(n) classifies n-dimensional oriented vector bundles. For
k ≥ 0 there are ladders of maps

BO(n) ✲ BO(n + k) ✲ BO

�✒ �✒ �✒
BSO(n) ✲ BSO(n + k) ✲ BSO

BPL(n)
❄

✲ BPL(n + k)
❄

✲ BPL
❄

�✒ �✒ �✒
BSPL(n)

❄
✲ BSPL(n + k)

❄
✲ BSPL

❄

BTOP(n)
❄

✲ BTOP(n + k)
❄

✲ BTOP
❄

�✒ �✒ �✒
BSTOP(n)

❄
✲ BSTOP(n + k)

❄
✲ BSTOP

❄

BG(n)
❄

✲ BG(n + k)
❄

✲ BG
❄

�✒ �✒ �✒
BSG(n)

❄
✲ BSG(n + k)

❄
✲ BSG

❄

such that the diagram commutes (at least up to homotopy). The hor-
izontal arrows correspond to the process of stabilization, i.e., if f :
X ✲ BSTOP(n) classifies ξ, then the composite

X ✲ BSTOP(n) ✲ BSTOP(n + k)

classifies ξ⊕Rk. The vertical and the slanted arrows are ’forgetful’: they
forget the vector space structure, the PL structure, and the fiber bundle
structure, respectively, and the slanted arrows forget the orientation.
For these results, see e.g., Rudyak [50] Ch. IV.

By a well-known construction, every continuous map f : X ✲ Y
between topological spaces can be converted into a fibration f ′ : Pf

✲ Y , with X 
 Pf , see Spanier [55] Ch. 2.8 Theorem 9. If Y is
path-connected, then all fibers of f ′ have the same homotopy type, and
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it makes sense to speak about the homotopy fiber of the map f . Let
BH ✲ BG be one of the maps in the diagram above. The homotopy
fiber of this map is denoted by G/H. One can show that the homotopy
fiber of the map BO(n) ✲ BO(n + k) is homotopy equivalent to the
Stiefel manifold O(n + k)/O(n), so this terminology fits together with
the standard Lie group terminology.

From the homotopy viewpoint, the stable classifying spaces are much
easier to understand. This is partly due to the fact that they are H-
spaces (the Whitney sum of bundles is the multiplication). The homo-
topy groups of BO are known by Bott periodicity, BO × Z 
 Ω8BO, see
Bott [4] [5], i.e.,

πk(BO × Z) ∼=


Z for k ≡ 0 (mod 4)
Z/2 for k ≡ 1, 2 (mod 8)
0 else.

The homotopy groups of BG correspond to the stable homotopy groups
of spheres, see, e.g., Milnor [44] §2 and Madsen-Milgram [41] Ch. 3,

πk+1(BG) ∼= lim
n→∞πk+n(Sn) = πsk(S0)

which are known in low dimensions, see, e.g., Toda [60] Ch. XIV, Hu [27]
pp. 328–332, or Fomenko-Fuchs-Gutenmacher [18] pp. 300–301. For the
other homotopy fibers, we use the following results which are obtained
from surgery theory.

Theorem 4.1. The homotopy groups of G/TOP are given by
the periodicity G/TOP × Z 
 Ω4(G/TOP), see Kirby-Siebenmann [33]
p. 327 (the Z-factor is forgotten there), and

πk(G/TOP × Z) ∼=


Z for k ≡ 0 (mod 4)
Z/2 for k ≡ 2 (mod 4)
0 else,

see also Madsen-Milgram [41] Ch. 2.

Finally, we use the following result (see Kirby-Siebenmann [33, p.
200]).

Theorem 4.2. The homotopy groups of TOP/O and TOP/PL
are finite in all dimensions. If i ≥ 5, then πi(TOP/O) is isomorphic
to the Kervaire-Milnor group Θi of DIFF structures on Si (see Kirby-
Siebenmann [33] p. 200, 251), and TOP/PL is an Eilenberg-MacLane
space of type K(Z/2, 3).
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It follows from Serre’s C-theory that

H̃•(TOP/O; Q) ∼= H̃•(TOP/PL; Q) ∼= H̃•(PL/O; Q) ∼= 0

(see Spanier [55] Ch. 9.6). The Serre spectral sequence yields thus nat-
ural isomorphisms

H•(BO; Q) ✛
∼=

H•(BPL; Q) ✛
∼=

H•(BTOP; Q),

see also Kahn [31]. The rational cohomology ring of BO is known to
be a polynomial algebra generated by the universal Pontrjagin classes
p4, p8, . . . ,

H•(BO; Q) ∼= Q[p4, p8, p12, . . . ],

see e.g., Madsen-Milgram [41] p. 13. In view of the isomorphisms above,
there are natural rational Pontrjagin classes defined for Rn-bundles and
for PL-bundles: if X ✲ BTOP(n) is a classifying map for an Rn-
bundle ξ, then p4k(ξ) ∈ H4k(X; Q) is by definition the pull-back of
the universal Pontrjagin class p4k ∈ H4k(BTOP; Q) via the composite
X ✲ BTOP(n) ✲ BTOP, see also Milnor-Stasheff [46] pp. 250–
251.

4.3. Recall that the signature of an oriented 4k-manifold M is
by definition the signature of the quadratic form H2k(M ; Q) ✲ Q,
v �−→ 〈v2, [M ]〉. (The signature of a rational quadratic form represented
by a symmetric matrix is the number of strictly positive eigenvalues
minus the number of strictly negative real eigenvalues of the matrix.)
The signature is invariant under oriented bordism and induces a group
homomorphism from the oriented DIFF bordism ring into the integers,

Sig : ΩSO
• ✲ Z.

It follows that the signature of a smooth closed 4k-manifold can be
expressed as a certain linear combination of the rational Pontrjagin
numbers of M which is given by Hirzebruch’s L-genus,

Sig(M) = 〈L4k(M), [M ]〉,

see Milnor-Stasheff [46] p. 224 and Madsen-Milgram [41] Theorem 1.38.
The Hirzebruch classes L4k ∈ H4k(BO; Q) are certain rational homo-
geneous polynomials in the rational Pontrjagin classes, see Hirzebruch
[24] 1.5, Milnor-Stasheff [46] §19. These polynomials can be obtained
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by a formal process from the power series expansion of the function
f(t) =

√
t

tanh
√
t
. These results were proved by Hirzebruch for smooth

closed oriented manifolds, see Hirzebruch [24] Hauptsatz 8.2.2. How-
ever, there is an isomorphism

ΩSO
• ⊗ Q ∼= ΩSTOP

• ⊗ Q,

so the Signature Theorem carries over to the bordism ring of closed
oriented manifolds, see Kahn [31], Kirby-Siebenmann [33] p. 322.

Theorem 4.4. Let M be a closed oriented 4k-manifold with funda-
mental class [M ]. Then

Sig(M) = 〈L4k(M), [M ]〉.

The signature of our models is clearly Sig(M(ξ)) = 1.

Lemma 4.5. For our models, M(ξ), we have the following relation
for the Hirzebruch classes:

L2m(M(ξ)) = y2m.

To compute the Hirzebruch classes in terms of the Pontrjagin classes,
we use the following result which is a direct consequence of Hirzebruch
[24] 1.4. Let f(t) = 1 +

∑
k≥1 fkt

k be a formal power series, and let
{Kk(σ1, . . . , σk)}∞k=1 denote the corresponding multiplicative sequence,
see Hirzebruch [23] §1. The associated genus F of f(t) is defined by

F4k = Kk(p4, . . . , p4k) ∈ H4k(BO; Q).

Hirzebruch’s L-genus comes from the formal power series

5(t) =
√
t

tanh
√
t

= 1 +
1
3
t − 1

45
t2 +

2
945

t3 − 1
4725

t4 + · · · ,

and the Â-genus (which will be needed later in Section 7) from

â(t) =
√
t/2

sinh
√
t/2

= 1 − 1
24

t +
7

5760
t2 − 31

967680
t3 +

127
154828800

t4 + · · · .

Suppose now that ξ is an Rn bundle over a space X, and that p4k(ξ)
and p8k(ξ) are the only nonzero Pontrjagin classes of ξ. This holds for



projective planes and their look-alikes 21

example if X is a space with Hj(X; Q) = 0 for all j �= 0, 4k, 8k (such
as our models M(ξ)). In the cohomology ring of such a space, there is
the following general formula for F8k = K2k(0, · · · , 0, p4k, 0, . . . , 0, p8k).
Put

f∨(t) = f(t)
d

dt

(
t

f(t)

)
=

∑
(−1)ksk tk.

By loc.cit. 1.4, one has the general relation

K2k(0, . . . , 0, p4k, 0, . . . , p8k) = s2kp8k +
1
2

(s2k − s2k)p24k

For 5∨ and â∨ one obtains

5∨(t) = 1 − 1
3
t +

7
45

t2 − 62
945

t3 +
127
4725

t4 + · · ·

â∨(t) = 1 +
1
24

t − 1
1440

t2 +
1

60480
t3 − 1

2419200
t4 + · · · .

4.6. For specific values, calculations can readily be done with the
formal power series package of Maple. In low dimensions, one obtains
the following.

L4(p4) =
1
3
p4

Â4(p4) =
−1

23 · 3
p4

L8(p4, p8) =
1

32 · 5
(7p8 − p24)

Â8(p4, p8) =
−1

27 · 32 · 5
(4p8 − 7p24)

L16(0, p8, 0, p16) =
1

34 · 52 · 7
(381p16 − 19p28)

Â16(0, p8, 0, p16) =
−1

211 · 34 · 52 · 7
(12p16 − 13p28).

In the last two equations, we assume thus that p4 = 0 = p12. See
also Hirzebruch [24] 1.5 and 1.6, Milnor-Stasheff [46] p. 225, Lawson-
Michelsohn [39] pp. 231–232, Eells-Kuiper [15] p. 105 for explicit for-
mulas for these genera in low dimensions.

From the signature theorem, we obtain thus for our models strong
relations between pm and p2m.
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Lemma 4.7. For our models, we have

p4(M) =
1
3
y22 (m = 2)

p8(M) =
1
7

(45y24 + p4(M)2) (m = 4)

p16(M) =
1

381
(14175y28 + 19p8(M)2) (m = 8).

4.8. We need also the first exotic characteristic classes for TOP-
and PL-bundles. By a standard mapping cylinder construction, we may
convert the maps BO ✲ BPL ✲ BTOP into cofibrations, see
Spanier [55] Ch. 3.2 Theorem 12. Thus, it makes sense to speak of the
homology and homotopy groups of the pairs (BTOP,BO) etc. Note
also that these three spaces are H-spaces with isomorphic fundamental
groups. Thus, π1(BO) ∼= π1(BPL) ∼= π1(BTOP) ∼= Z/2 acts trivially on
the homotopy groups of each of these pairs, whence πk = π′

k for these
pairs (recall that π′

k is the kth homotopy group, factored by the action
of π1, see Spanier [55] p. 390). Consequently, we have Hurewicz isomor-
phisms Hk(BPL,BO) ∼= πk(BPL,BO) up to and including the lowest di-
mensions where the right-hand side is nontrivial, see Spanier [55] Ch. 7.5
Theorem 4. Now there is an isomorphism πk−1(PL/O) ∼= πk(BPL,BO),
see Whitehead [66] Ch. IV 8.20. In fact, there is a commutative diagram

πk−1(PL/O) ✛∂∼= πk(CPL/O,PL/O) ∼=
✲ πk(BPL,BO)

Hk−1(PL/O)
❄

✛∂∼= Hk(CPL/O,PL/O)
❄

✲ Hk(BPL,BO)
❄

where CPL/O 
 ∗ is the unreduced cone. Since PL/O is 6-connected,
see Madsen-Milgram p. 33, this diagram consists of isomorphisms for
k ≤ 8. We obtain a similar diagram for TOP/O and TOP/PL, with
isomorphisms for k ≤ 4, using the fact that TOP/PL and TOP/O are
2-connected, see Kirby-Siebenmann p. 246.

We combine this with the following result due to Hirsch [23] p. 356.

Proposition 4.9. There are short exact sequences

0 ✲ πk(BO) ✲ πk(BPL) ✲ πk(BPL,BO) ✲ 0

for all k ≥ 0.
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4.10. Since TOP/PL is an Eilenberg-MacLane space of type
K(Z/2, 3), and since PL/O is 6-connected, this implies readily that each
arrow

πk(BO) ✲ πk(BPL) ✲ πk(BTOP)

is an injection, for all k ≥ 0.

We combine this with the commutative diagram in 4.8 and obtain
thus the following result.

Lemma 4.11. There are natural isomorphisms

Hk(BO)
∼=✲ Hk(BPL)

∼=✲ Hk(BTOP)

for k ≤ 3, and Hk(BO)
∼=✲ Hk(BPL) for k ≤ 7, and exact sequences

H4(BO) ✲ H4(BTOP) ✲ H4(BTOP,BO) ✲ 0

H4(BPL) ✲ H4(BTOP) ✲ H4(BTOP,BPL) ✲ 0

H8(BO) ✲ H8(BPL) ✲ H8(BPL,BO) ✲ 0.

Furthermore, H4(BTOP, BO) ∼= H4(BTOP, BPL) ∼= Z/2 and
H8(BPL,BO) ∼= Z/28.

Proof. The corresponding homotopy groups are given in Kirby-
Siebenmann [33] p. 246. q.e.d.

From the universal coefficient theorem, see Spanier [55] Ch. 5.5 The-
orem 3, we have the following result.

Proposition 4.12. For any coefficient domain R, there are exact
sequences

H4(BO;R) ✛ H4(BTOP;R) ✛
τTOP/O

H3(TOP/O;R) ✛ 0

H4(BPL;R) ✛ H4(BTOP;R) ✛
τTOP/PL

H3(TOP/PL;R) ✛ 0

H8(BO;R) ✛ H8(BPL;R) ✛
τPL/O

H7(PL/O;R) ✛ 0.

4.13. The τTOP/PL-image of the generator of H3(TOP/PL; Z/2) ∼=
Z/2 is the universal Kirby-Siebenmann class ks ∈ H4(BTOP; Z/2). For
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R = Z/4, we pick a generator κ of the τPL/O-image of H7(PL/O; Z/4) ∼=
Z/4. Thus we define the first exotic characteristic classes

ks ∈ H4(BTOP; Z/2) and κ ∈ H8(BPL; Z/4).

The map τ is the transgression (see McCleary [42] 6.2). This is maybe
not obvious from our construction. To see this, consider the following
diagram of cochain complexes.

0 0 0

0 ✛ S•(PL/O)

✻

✛ S•(BO)

✻

✛ S•(BO,PL/O)

✻

✛ 0

0 ✛ S•(CPL/O)

✻

✛ S•(BPL)

✻

✛ S•(BPL, CPL/O)

✻

✛ 0

0 ✛ S•(CPL/O,PL/O)

✻
✛ S•(BPL,BO)

✻

✛ S•(BPL,BO, CPL/O)

✻
✛ 0

0

✻

0

✻

0

✻

Here, S•(BPL,BO, CPL/O) denotes the singular cochain complex of the
triad (BPL,BO, CPL/O), see Eilenberg-Steenrod [16] VII.11. Using the
isomorphisms derived above, patient diagram chasing in the correspond-
ing big diagram for cohomology (the infinite cohomology jail window,
see, e.g., Cartan-Eilenberg [10] IV Proposition 2.1) shows that τ is in-
deed the transgression.

5. Stable Rn-bundles over Sm

Our aim is the classification of Rm-bundles over Sm in terms of
characteristic classes. We begin with the stable classification, which is
easier. Recall from 4.10 that there is an exact sequence

0 ✲ πk(BO) ✲ πk(BTOP) ✲ πk−1(TOP/O) ✲ 0

for all k ≥ 0.

Lemma 5.1. In dimensions k = 2, 4, 8 these exact sequences read
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as follows.

0 ✲ Z/2 ✲ Z/2 ✲ 0 ✲ 0 (k = 2)

0 ✲ Z ✲ Z ⊕ Z/2 ✲ Z/2 ✲ 0 (k = 4)

0 ✲ Z ✲ Z ⊕ Z/4 ✲ Z/28 ✲ 0 (k = 8).

Proof. We consider the maps

G/TOP

TOP/O ✲ BO ✲ BTOP
❄

BG.
❄

The space TOP/O is 2-connected, see Kirby-Siebenmann [33] p. 246,
and this establishes the result for m = 2. Furthermore π3(TOP/O) ∼=
Z/2 and π7(TOP/O) ∼= Z/28, see Kirby-Siebenmann [33] p. 246 and
200, and Kervaire-Milnor [32]. From the isomorphisms πk(BG) ∼=
πsk−1(S

0) we have π4(BG) ∼= Z/24 and π8(BG) ∼= Z/240, see Toda [60]
Ch. XIV, Hu [27] Ch. XI. Theorem 16.4 and p. 332, or Fomenko-Fuchs-
Gutenmacher [18] p. 300. Finally, π4k(BO) ∼= Z for k ≥ 1 by Bott
periodicity. Thus we obtain diagrams

Z Z

Z
mono✲ π4(BTOP)

mono

❄ epi✲ Z/2 Z
mono✲ π8(BTOP)

mono

❄ epi✲ Z/28

❅
❅

❅
❅

epi
JO

❘

❅
❅

❅
❅

epi
JO

❘
Z/24

epi

❄
Z/240.

epi

❄

In these diagrams, the rows are short exact sequences by the remarks
at the beginning of this section. The columns are also short exact, since
π4k−1(G/TOP) = 0, while π4k+1(BG) is finite. The slanted arrows JO
are known to be epimorphisms in these dimensions, see e.g., Adams [1]
p. 22 and p. 46.
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Let T4k denote the torsion group of π4k(BTOP), i.e., π4k(BTOP) ∼=
Z ⊕ T4k. Suppose that m = 4. The diagram shows that T4 injects into
Z/2. If we tensor the diagram with Z/2, then JO ⊗ Z/2 is a bijection.
Therefore, the horizontal sequence

0 ✲ Z/2 ✲ Z/2 ⊕ (T4 ⊗ Z/2) ✲ Z/2 ✲ 0

is still exact after tensoring (the only point to check is injectivity of the
second arrow). It follows that T4 ∼= Z/2.

The case m = 8 is similar. The group T8 injects into Z/28 and into
Z/240. Since gcd(28, 240) = 4, the group injects into Z/4. Similarly as
in the case m = 4, tensoring the diagram with Z/4 we see that JO⊗Z/4
is an isomorphism. Thus the sequence

0 ✲ Z/4 ✲ Z/4 ⊕ (T8 ⊗ Z/4) ✲ Z/4 ✲ 0

is exact, and T8 ∼= Z/4. q.e.d.

For k ≥ 3, the structure of the torsion groups T4k was determined
by Brumfiel [8], see Madsen-Milgram [41] p. 117. The cases k = 1, 2
are special; they are considered in Kirby-Siebenmann [33] p. 318 and
Williamson [67] p. 29.

5.2. The result above yields thus exact sequences

0 ✲ π4(BO)
∼=✲ π4(BTOP)/T4 ✲ 0 ✲ 0 (m = 4)

0 ✲ π8(BO) ✲ π8(BTOP)/T8 ✲ Z/7 ✲ 0 (m = 8).

The cokernels of the corresponding maps π4k(BO) ✲ π4k(BTOP)/T4k
for k ≥ 3 are determined in Brumfiel [8] p. 304 in number theoretic
terms.

Consider now the map which assigns to a stable Rn-bundle ξ over S4k

the rational Pontrjagin number 〈p4k(ξ), [S4k]〉. We want to determine
the possible values of this map, and we do this first for vector bundles.

5.3. For a finite connected CW-complex X and an n-dimensional
vector bundle ξ over X, there is a classifying map X ✲ BO(n). The
Pontrjagin classes of X are obtained by pulling back the universal Pon-
trjagin classes in H•(BO; Q) via the composite X ✲ BO(n) ✲ BO.
Only the homotopy type of this map is important, so we view it as an
element of the set [X; BO] of free homotopy classes of maps from X to
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BO (since BO is an H-space and X is connected, we have [X; BO]0 =
[X,BO], as discussed in the remarks at the end of the introduction of
this paper). Now this set [X; BO] can be identified with the real reduced
K̃O-theory of X,

[X; BO] = K̃O(X),

see Atiyah-Hirzebruch [3], Hirzebruch [25] or Husemoller [30]. The Pon-
trjagin character is the ring homomorphism ph = ch ◦ cplx,

KO(X)
cplx✲ KU(X)

ch✲ H•(X; Q)

where cplx denotes complexification of real vector bundles, and ch de-
notes the Chern character of complex KU-theory, see Atiyah-Hirzebruch
[3] or Hirzebruch [25] 1.4. For the following facts see Hirzebruch [25]
1.4–1.6. Hirzebruch’s integrality theorem says that

ch(KU(S2k)) = H•(S2k) ⊆ H•(S2k; Q),

with ch(η) = rkC(η) + (−1)k−1 1
(k−1)!ck(η). Recall also that p4k(ξ) =

(−1)kc2k(ξ ⊗ C). Thus we have the formula

ph(ξ) = rkR(ξ) + (−1)k−1 1
(2k − 1)!

p4k(ξ)

on S4k. The map K̃O(S4k)
cplx✲ K̃U(S4k) is injective, with cokernel 0

for k even, and cokernel Z/2 for k odd.

Combining these facts, we have the following result.

Lemma 5.4. Let ξ be a vector bundle over S4k, and let x ∈
H4k(S4k) be a generator. Then

p4k(ξ) = aξ · dk · (2k − 1)! · x

where aξ is an integer depending on ξ, and dk = 1 for k even, dk = 2
for k odd. Conversely, given any integer aξ, there exists a vector bundle
ξ with such a Pontrjagin class, and ξ is unique up to stable equivalence.

Proof. Since BO is an H-space, the set [S4k; BO] of free homotopy
classes coincides with the homotopy group π4k(BO) = [S4k; BO]0. View-

ing the universal Pontrjagin class p4k as a map BTOP
p4k✲ K(Q, 4k)
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into an Eilenberg-MacLane space, we obtain a nontrivial group homo-
morphism

Z ∼= π4k(BO)
(p4k)#✲ π4k(K(Q, 4k)) ∼= Q.

q.e.d.

If ξ is a vector bundle, the possible values of the rational numbers
〈p4k(ξ), [Sm]〉 are thus the integral multiples of dk · (2k − 1)!.

Lemma 5.5. Let ξ be an Rn-bundle over Sm, for m = 4, 8. Then

〈p4(ξ), [S4]〉 ∈ 2Z ⊆ Q

〈p8(ξ), [S8]〉 ∈ 6
7Z ⊆ Q.

Conversely, for each of these values, there exists an Rn-bundle (for some
sufficiently large n) whose Pontrjagin number assumes this value.

Proof. This is clear from Lemma 5.4, applied to the special cases
k = 1, 2, and the formula for the cokernel of the map

π4k(BO) ✲ π4k(BTOP)/T4k

which was derived in 5.2. q.e.d.

We have proved the following result.

Proposition 5.6. Let ξ be an Rn-bundle over Sm, for m = 2, 4, 8.
Up to stable equivalence, the bundle ξ is completely determined by the
following characteristic classes:

(m = 2) its 2nd Stiefel-Whitney class w2(ξ).

(m = 4) its 4-dimensional Pontrjagin class p4(ξ) and its Kirby-Sieben-
mann class ks(ξ).

(m = 8) its 8-dimensional Pontrjagin class p8(ξ) and the characteristic
class κ(ξ).

The possible ranges for the values of these characteristic classes, evalu-
ated on the fundamental class [Sm], are Z/2 (for m = 2), 2Z and Z/2
(for m = 4), and 6

7Z and Z/4 (for m = 4), respectively.

Proof. We prove the 8-dimensional case; the others are similar. Let
(BPL,BO) ✲ (K(Z/4, 8), ∗) represent the generator of H8(BPL,BO;
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Z/4) which maps to κ. Then the composite BPL ✲ (BPL,BO) ✲

(K(Z/4, 8), ∗) induces an isomorphisms on the Z/4-factors in

π8(BPL) ✲ π8(BPL,BO) ✲ π8(K(Z/4, 8)),

which can be identified with the map ξ �−→ κ(ξ) ∈ H8(BPL; Z/4). The
octonionic Hopf bundle ηO over S8 represents an element of π8(BPL)
with p8(ηO) �= 0. Thus, the map ξ �→ (p8(ξ), κ(ξ)) ∈ H8(S8; Q) ⊕
H8(S8; Z/4) ∼= Q ⊕ Z/4 is an injection (with image 6

7Z ⊕ Z/4). q.e.d.

6. Rm-bundles over Sm

In the previous section, we classified bundles over Sm up to stable
equivalence in terms of characteristic classes. To obtain an unstable
classification, i.e., a classification of Rm-bundles over Sm, we use the
following result.

Proposition 6.1. Let m ≥ 2 be even. Then there is a commutative
diagram with exact rows

0 ✲ πm(Sm) ✲ πm(BO(m)) ✲ πm(BO) ✲ 0

0 ✲ πm(Sm)

�����
✲ πm(BPL(m))

❄
✲ πm(BPL)

❄
✲ 0

0 ✲ πm(Sm)

�����
✲ πm(BTOP(m))

❄
✲ πm(BTOP)

❄
✲ 0

0 ✲ πm(Sm)

�����
✲ πm(BG(m))

❄
✲ πm(BG)

❄
✲ 0.

In this diagram, the second column of vertical arrows is induced by the
respective classifying map of the tangent bundle of Sm (resp. its under-
lying spherical fibration) and the third column of vertical arrows corre-
sponds to stabilization.

Proof. This is proved in [37] pp. 93–95; there, the result is stated for
the oriented case, but the homotopy groups are the same. The PL result
is not stated in [37], but in low dimensions, πk(BO) ∼= πk(BPL) and in
higher dimensions πk(BPL) ∼= πk(BTOP), see Kirby-Siebenmann [33]
V §5. For a related result (but excluding dimension 4) see Varadarajan
[61]. q.e.d.
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Our aim is to prove that the first three rows in this diagram split,
provided that m ≥ 4. It suffices to prove this for the third row; the
diagram then implies the splitting of the first two rows.

Lemma 6.2. Let m ≥ 4 be even. Then the exact sequence

0 ✲ πm(Sm) ✲ πm(BTOP(m)) ✲ πm(BTOP) ✲ 0

splits.

Proof. Since we consider only higher dimensional homotopy groups,
we may as well consider the universal coverings BSTOP(m) and BSTOP
which classify oriented bundles. So we have an exact sequence

0 ✲ πm(Sm) ✲ πm(BSTOP(m)) ✲ πm(BSTOP) ✲ 0.

Let e denote the universal Euler class, viewed as a map BSTOP(m)
e✲

K(Z,m) into an Eilenberg-MacLane space. The Euler class yields thus
a homomorphism

πm(BSTOP(m))
e#✲ πm(K(Z,m)) = Hm(Sm)

〈−,[Sm]〉
∼=

✲ Z.

If m �= 4, 8, then the image of this map is 2Z by Adams’ result
(see Proposition 2.3). The Euler class of the tangent bundle of Sm is
2x, so the exact sequence above splits: we have constructed a left inverse
for the second arrow πm(Sm) ✲ πm(BSTOP(m)).

For m = 4, 8, we consider the last two rows of the big diagram,

0 ✲ πm(Sm) ✲ πm(BTOP(m)) ✲ πm(BTOP) ✲ 0

0 ✲ πm(Sm)

�����
✲ πm(BG(m))

❄
✲ πm(BG)

❄
✲ 0.

Let T ′
m denote the torsion subgroup in πm(BTOP(m)), and Tm ∼=

Z/(m/2) the torsion subgroup of πm(BTOP)). It is clear that T ′
m

injects into Tm. The sequence splits if and only if T ′
m maps isomor-

phically onto Tm. Now π4(BG(4)) ∼= π3(G(4)) ∼= π7(S4) ∼= Z ⊕ Z/12,
and π4(BG) ∼= πs3(S

0) ∼= Z/24. Similarly, π8(BG(8)) ∼= π7(G(8)) ∼=
π15(S8) ∼= Z ⊕ Z/120, and π8(BG) ∼= πs7(S

0) ∼= Z/240. See Toda [60]
Ch. XIV, Hu [27] Ch. XI. Theorem 16.4 and p. 332, or Fomenko-Fuchs-
Gutenmacher [18] p. 300 for these groups. It follows that in the bottom
row of the diagram, a generator ιm ∈ πm(Sm) maps to (2,−1) ∈ Z⊕Z/12
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resp. in Z ⊕ Z/120, for m = 4, 8. If we tensor the diagram above with
Z/2 for m = 4 (resp. with Z/4 for m = 8), then the image of ιm still has
order 2 (resp. 4) in πm(BG(m)) ⊗ Z/(m/2). Thus the bottom row re-
mains exact after tensoring, and therefore, the upper row remains also
exact (the only point to be checked was the injectivity of the second
arrow). It follows that T ′

m
∼= Tm. q.e.d.

In dimension m = 2, we use Kneser’s old result BO(2) 
 BTOP(2),
see Kirby-Siebenmann [33] p. 254. Thus, there is a (non-split) short
exact sequence

0 ✲ π2(S2) ✲ π2(BTOP(2)) ✲ Z/2 ✲ 0

and π2(BTOP(2)) ∼= Z. Using similar ideas as above, it is not difficult
to prove that the sequence

0 ✲ πm(Sm) ✲ πm(BG(m)) ✲ πm(BG) ✲ 0

splits for all even m �= 2, 4, 8 (and for these three values, the sequence
is not split). We will not need this result.

6.3. Proof of Proposition 3.3. Let ξ and ξ′ be Rm-bundles over
Sm, for m ≥ 2 even. Assume first that we can choose orientations of
these bundles such that e(ξ) = e(ξ′). Let c denote the classifying map
for the oriented tangent bundle τSm, and let cξ and cξ′ be classifying
maps for the oriented bundles ξ and ξ′. The splitting of the exact
sequence

0 ✲ πm(Sm)
c#✲ πm(BSTOP(m)) ✲ πm(BSTOP) ✲ 0

implies then that (cξ)# = (cξ′)# (as maps πm(Sm) ✲ πm(BSTOP)).
Thus ξ ∼= ξ′.

In the general case m ≥ 4, we have the action of π1(BO(m)) ∼=
π1(BTOP(m)) ∼= Z/2 on the higher homotopy groups. The generator
α0 of the fundamental group of BO(m) maps c# to its negative −c#
(see Steenrod [57] 23.11). From the splitting of the exact sequence

0 ✲ πm(Sm) ✲ πm(BTOP(m)) ✲ πm(BTOP) ✲ 0

and the diagram in Proposition 6.1 we see that α0 changes the sign of
the Euler class. Thus, if |e| = |e′|, then we may as well assume that
e(ξ) = e(ξ′).

The case m = 2 follows directly from BO(2) 
 BTOP(2). q.e.d.
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We summarize our classification of Rm-bundles over Sm, for m =
2, 4, 8, as follows.

Proposition 6.4. Let ξ be an R2-bundle over S2. Up to equiva-
lence, ξ is determined by its absolute Euler number |e| = |〈e(ξ), [S2]〉|,
and for each |e| ∈ N, there exists one such bundle. A weak equivalence
between any two such bundles is an equivalence.

Let ξ be an R4-bundle over S4. Up to equivalence, ξ is determined by
its absolute Euler number |e| = |〈e(ξ), [S2]〉|, its Kirby-Siebenmann num-
ber 〈ks(ξ), [S4]〉 ∈ Z/2 and the Pontrjagin number 〈p4(ξ), [S4]〉 ∈ 2 · Z.
For each triple (|e|, ks, p4) ∈ N × Z/2 × 2 · Z satisfying the relation
p4 + 2|e| ≡ 0 (mod 4), there exists one such bundle. If two such bun-
dles ξ, ξ′ are weakly equivalent, but not equivalent, then (|e|, p4, ks) =
(|e′|,−p′4, ks′).

Let ξ be an R8-bundle over S8. Up to equivalence, ξ is determined by
its absolute Euler number |e| = |〈e(ξ), [S2]〉|, the number 〈κ(ξ), [S8]〉 ∈
Z/4 and the Pontrjagin number 〈p8(ξ), [S8]〉 ∈ 6

7 · Z. For each triple in
N × Z/4 × 6

7 · Z satisfying the relation 7
3p8 + 2|e| ≡ 0 (mod 4), there

exists one such bundle. If two such bundles ξ, ξ′ are weakly equivalent,
but not equivalent, then (|e|, p8, κ) = (|e′|,−p′8,−κ).

Proof. We prove the 8-dimensional case; the other cases are sim-
ilar. First, we classify oriented bundles; the orientation we choose is
the orientation determined by the universal oriented R8-bundle over
BSTOP(8). Then it is clear from our discussion that ξ is determined
by the data

(〈e(ξ), [S8]〉, 〈κ(ξ), [S8]〉, 〈p8(ξ), [S8]〉) ∈ Z × Z/4 × 6
7Z.

Now we have as in 6.3 the action of α0 which changes the sign of the
Euler class without changing the sign of p8 and κ (since these two classes
come from BTOP, where α0 acts trivially). This shows that the given
numbers classify the bundle up to equivalence.

Let ι8 ∈ π8(S8) denote the canonical generator, and let c be the
classifying map for the oriented tangent bundle of S8. For the number-
theoretic relation between the Pontrjagin class and the Euler class, we
note first that the image (c)#(π8(S8)) is a direct factor in π8(BSTOP(8)).
The octonionic Hopf line bundle ηO has Euler class x and Pontrjagin
class 6x (for a suitable generator x of Hm(Sm)), see, e.g., [36] Theorem
9. Let h be a classifying map for the oriented bundle ηO. Then c#(ι8)
and h#(ι8) span π8(BSTOP(8)) ⊗ Q (over Q), and the image of h in
π8(BSTOP) spans π8(BSTOP) ⊗ Q (over Q). Since e(ξ) is necessarily
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integral for any oriented R8-bundle over S8, we see from Lemma 5.5
that there exists a bundle η′ with classifying map h′ and e(η′) = x,
p8(η′) = 6

7x, and that c#(ι8) and h′
#(ι8) span a direct complement of

the torsion group of π8(BSTOP(8)) (over Z).
Finally, a weak equivalence which is not an equivalence comes from

a map S8 ✲ S8 of degree −1; such a map changes the sign of every
characteristic class. q.e.d.

7. The classification of the models

In this section, we obtain the final homeomorphism classification of
our models. We fix some notation. Let ξ be an Rm-bundle over Sm,
with absolute Euler number |e| = 1, for m = 2, 4, 8, let M(ξ) be its
Thom space, and let s0 : Sm ✲ E ⊆ M(ξ) be the zero-section. Let
ym ∈ Hm(M(ξ)) denote a generator, such that x = s•0ym is a generator
dual to the chosen orientation [Sm]. For m = 4, 8, we have by 3.7 the
relations

s•0(pm(M(ξ))) = pm(ξ) (m = 4, 8)
s•0(ks(M(ξ))) = ks(ξ) (m = 4)
s•0(κ(M(ξ))) = κ(ξ) (m = 8).

Theorem 7.1. Up to homeomorphism, our construction yields
precisely the following models.

For m = 2, there is just one model, the complex projective plane
M(ηC) ∼= CP2, where ηC is the complex Hopf line bundle (the tautolog-
ical bundle) over CP1 = S2.

For m = 4, let p4(ξ) = 2(1 + 2t)x and ks(ξ) = sx, for (t, s) ∈ Z ×
Z/2. By Proposition 6.4, the pair (r, s) = (1 + 2t, s) determines ξ up to
equivalence, so we may put Mr,s = M(ξ). If there is a homeomorphism
Mr,s

∼= Mr′,s′, then (r, s) = (±r′, s). The quaternion projective plane is
M1,0

∼= HP2 = M(ηH) ∼= M−1,0. The model Mr,s admits a PL structure
(unique up to isotopy) if and only if s = 0.

For m = 8, let p8(ξ) = 6
7(1+2t)x and κ(ξ) = sx, for (t, s) ∈ Z×Z/4.

Again, the pair (r, s) = (1 + 2t, s) determines ξ up to equivalence by
Proposition 6.4, so we may put Mr,s = M(ξ). If there is a homeomor-
phism Mr,s

∼= Mr′,s′, then (r, s) = ±(r′, s′). The octonionic projective
plane is M7,0

∼= OP2 = M(ηO) ∼= M−7,0. Each model Mr,s admits a PL
structure (unique up to isotopy).
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Proof. The topological result is clear from our classification of Rm-
bundles over Sm with absolute Euler number |e| = 1. For a closed
manifold M of dimension at least 5, the only obstruction to the existence
of a PL structure is the Kirby-Siebenmann class ks(M). If such a PL
structure exists on M , the number of isotopy classes of PL structures
is determined by [M ; TOP/PL] ∼= H3(M ; Z/2), see Kirby-Siebenmann
[33] p. 318. In our case, these groups are zero. q.e.d.

The models constructed by Eells-Kuiper in [14] are CP2 (for m = 2),
the models Mr,0, with r = 1 + 2t (for m = 4), and the models M7r,0,
with r = 1 + 2t (for 8 = 4). Brehm-Kühnel [6] construct 8-dimensional
PL manifolds which look like projective planes, and with small numbers
of vertices. However, the characteristic classes of their examples seem
to be unknown.

7.2. Now we consider the question which of the models admit
a DIFF structure. The number of PL or DIFF structures on CP2 is
presently not known, so we concentrate from now on the cases m = 4, 8.
Concerning DIFF structures in higher dimensions, a necessary condition
(besides the existence of a PL structure) is clearly that τM(ξ) admits
a vector bundle structure. In particular, ξ ∼= s∗0τM(ξ) has to admit
a vector bundle structure. Thus, if Mr,s = M1+2t,s admits a DIFF
structure, then clearly s = 0, and in addition t ≡ 3 (mod 7) for m = 8.
But this guarantees only that ξ admits a vector bundle structure. From
4.6 and Lemma 4.7, we see that

Â [M1+2t,s] = − t(1 + t)
23 · 7

(m = 4)

Â [M7(1+2u),s] = −u(1 + u)
27 · 127

(m = 8).

Since Mr,s is 3-connected, the first Stiefel-Whitney classes vanish. Thus,
if Mr,s admits a DIFF structure, then it is a Spin manifold, see Lawson-
Michelsohn [39] Ch. II Theorem 2.1. But for a closed oriented Spin
manifold M4k, the Â-genus Â[M ] is precisely the index of the Atiyah-
Singer operator, see Lawson-Michelsohn [39] Ch. IV Theorem 1.1; in
particular, it is an integer.

Lemma 7.3. If Mr,s admits a DIFF structure, then we have the
following relations: For m = 4 put r = 1 + 2t. Then s = 0 and t ≡
0, 7, 48, 55 (mod 56). For m = 8 put r = 7(1 + 2u). Then s = 0 and u
is an integer with u ≡ 0, 127, 16128, 16255 (mod 16256).
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This corresponds to Eells-Kuiper [14] Proposition 10 A, p. 43. In
fact, the above conditions are sharp.

Theorem 7.4. If m = 4, then M1+2t,s admits a DIFF struc-
ture if and only if s = 0 and t ≡ 0, 7, 48, 55 (mod 56). If m = 8,
then M7(1+2u),s admits a DIFF structure if and only if s = 0 and
u ≡ 0, 127, 16128, 16255 (mod 16256).

Proof. The number theoretic condition guarantees that ξ admits a
vector bundle structure. Thus we may choose a Riemannian metric on
ξ. Let SE ✲ Sm denote the corresponding unit sphere bundle of
ξ. Then E0 
 SE is a homotopy 2m − 1-sphere and thus homeomor-
phic to S2m−1 by the proof of the generalized Poincaré conjecture, see
Smale [54] and Newman [47]. If SE is diffeomorphic to S2m−1, then we
may choose a diffeomorphism α : S2m−1 ✲ SE. Gluing the closed
2m-disk D2m along α to the closed unit disk bundle DE of the vector
bundle ξ, we obtain a smooth 2m-manifold DE ∪α D2m homeomorphic
to Mr,s

∼= DE/SE. Thus the problem is reduced to the question whether
SE is diffeomorphic to S2m. Now the unit disk bundle X = DE is an
almost closed manifold, i.e., a smooth compact manifold X with bound-
ary ∂X = SE a homotopy sphere, see Wall [62]. By loc.cit. p. 178,
such a manifold X2m has a standard sphere S2m−1 as its boundary if
and only if its Â-genus is integral, provided that m = 4, 8 and that X
is m − 1-connected. The Â-genus of DE coincides of course with the
Â-genus of Mr,s. q.e.d.

The case m = 8 remained open in Eells-Kuiper [14]. Note that the
existence of a positive scalar curvature metric implies that the Â-genus
vanishes, see Lawson-Michelsohn [39] Ch. IV Theorem 4.1; this happens
only for the models HP2 and OP2.

Proposition 7.5. The only models which admit a DIFF structure
with a positive scalar curvature metric are HP2 and OP2.

These two manifolds admit a positive scalar curvature metric for any
DIFF structure; this follows from Stolz’ proof of the Gromov-Lawson-
Rosenberg conjecture, see Stolz [59] Theorem A (for these two manifolds,
Rosenberg’s earlier result [51] for lower dimensions actually suffices).
For spin manifolds of dimension 4k, the map α : ΩSpin

4k
✲ KO(S4k)

can be identified with a scalar multiple of the Â-genus.
Concerning the number of DIFF structures on a smoothable model

Mr,s, we have Wall’s result [62] which says that the DIFF structure
on the almost closed manifold DE is unique. The group Θ2m then
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acts transitively on the collection of all smoothings of Mr,s, see the
introduction in Stolz [58]. This group is cyclic of order 2 for m = 4, 8,
see Kervaire-Milnor [32] p. 504.

Proposition 7.6. If a model Mr,s, for m = 4, 8, admits a DIFF
structure, then it admits at most two distinct DIFF structures.

This fact was already observed in Eells-Kuiper [14]. To obtain a
more precise result, i.e., the exact number of DIFF structures, one would
have to determine the inertia groups of the smoothable models (see Stolz
[58]). Maybe his high-dimensional techniques can be adapted to this
situation.

7.7. Finally, we consider oriented bordisms between distinct mod-
els. So suppose that

∂W = Mr,s ∪ −Mr′,s′

is a compact oriented (topological) bordism between two models. Clearly,
the numbers p2m[Mr,s], ks2[Mr,s] (for m = 4), and κ2[Mr,s] (for m = 8)
are bordism invariants. Thus, the existence of an oriented bordism im-
plies that (r2, s2) = (r′2, s′2). This is good enough to settle the case
m = 4; here, we conclude that (r, s) = ±(r′, s′) and thus Mr,s

∼= Mr′,s′ ,
because s ∈ Z/2 has no sign. For m = 8 this is not good enough
to conclude that (r, s) = ±(r′, s′) because s is Z/4-valued. So we
use the standard fact from topological surgery theory (as developed
in Kirby-Siebenmann [33]) that such a bordism W can be made 7-
connected. The classifying map W ✲ BSTOP for the oriented
tangent bundle lifts thus to the 7-connected cover BSTOP〈8〉. Put
π = π8(BSTOP) ∼= Z ⊕ Z/4 and let BSTOP〈8〉 ✲ K(π, 8) denote
the corresponding characteristic map. Let x ∈ H8(K(π, 8)) ∼= Z ⊕ Z/4
be a generator for a free cyclic factor, and let q8 denote its image in
H8(BSTOP〈8〉). If X is any 7-connected CW-complex, and if ξ is a

stable Rn-bundle over X, then the classifying map X
c✲ BSTOP lifts

BSTOP〈8〉 q8 ✲ K(π, 8)

.....
.....

.....
.....✯

X
c ✲ BSTOP

❄

and the class q8(ξ) is defined. From the coefficient pairing Z⊗Z/4 ✲

Z/4, we obtain for any Rn-bundle over a 7-connected space X a Z/4-
valued 16-dimensional characteristic class q8κ and clearly, this class is
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a bordism invariant for 7-connected oriented bordisms. For X = S8,
we know that q8(ξ) = 7

6p8(ξ). For our 16-dimensional models, we have
thus q8(Mr,s) = 7

6p8(M) by 3.7, and this is an odd integral multiple
of the generator y8 ∈ H8(Mr,s). The 7-connected bordism yields now
the additional relation 7

6p8κ[Mr,s] = 7
6p8κ[Mr′,s′ ], which implies that

(r, s) = ±(r′, s′).

Proposition 7.8. Non-homeomorphic models Mr,s, Mr′,s′ fall into
different oriented bordism classes in ΩSTOP

2m .

8. The homotopy types of the models

For the homotopy classification of our models we use the Spivak fibra-
tion. We recall the construction and refer to Klein [34] for more details.
Let M be a closed 1-connected manifold (the case where π1(M) �= 1 is
more involved and will not be important to us). There exists an em-
bedding M ⊂ ✲ SN , for some sufficiently large N , such that M hat a
normal bundle νM in SN . In the group K̃TOP(M) = [M ; BTOP], the
bundle νM is just the inverse of the stable bundle class determined by
the tangent bundle τM , since τM ⊕ νM ∼= τSN |M = RN . This shows
that the normal bundle νM is unique up to stable equivalence.

There is a natural map SN
α✲ M(νM), where M(νM) is the

Thom space of the normal bundle. Let u(νM) be an orientation class.
One shows that for the fundamental classes of SN and M , one has the
relation

u(νM) D α•[SN ] = [M ]

(for the right choice of u(νM)). Now a result by Spivak [56] shows that
the stable fiber homotopy type of the underlying spherical fibration σM
of the bundle νM depends only on the homotopy type of M .

8.1. Let c : M ✲ BTOP be a stable classifying map for νM , and
let d : M ✲ BTOP be a stable classifying map for τM . Then c is an
inverse of d in the abelian group K̃TOP(M) = [M ; BTOP], and so the

composites M
c✲ BTOP ✲ BG and M

d✲ BTOP ✲ BG are
inverse to each other in the abelian group [M ; BG]. But M

c✲ BTOP
✲ BG is a classifying map for σM and depends thus by Spivak’s

result only on the homotopy type of M . It follows that the composite
M

d✲ BTOP ✲ BG is also a homotopy invariant of M .
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Proposition 8.2. If there is a homotopy equivalence f : M(ξ)
�✲

M(ξ′) between two models, then there is a fiber homotopy equivalence
τM(ξ) ⊕ Rk 
 f∗τM(ξ′) ⊕ Rk, for some k ≥ 0.

8.3. Since s0 : Sm ✲ M(ξ) represents a generator of πm(M(ξ)),
this has the consequence that there is a fiber homotopy equivalence

ξ ⊕ Rk 
 g∗ξ′ ⊕ Rk,

for some homeomorphism g : Sm ✲ Sm of degree ±1. Since ξ
has absolute Euler number |e| = 1, the mth Stiefel-Whitney class of
ξ is nontrivial: the mth Stiefel-Whitney class is the mod 2 reduc-
tion of the Euler class, see Milnor-Stasheff [46] Proposition 9.5, so
0 �= wm(ξ) = x ∈ Hm(S; Z/2). Also, the Stiefel-Whitney class de-
pends only on the stable type of the spherical fibration of ξ. Let
Rm ⊆ πm(BG) denote the set of all elements which represent a spher-
ical fibration over Sm with nontrivial mth Stiefel-Whitney class. This
is a coset of a subgroup of index 2 in πm(BG) (namely the kernel of

the map πm(BG)
(wm)#✲ πm(K(m,Z/2))). Precomposing the classify-

ing map with a map of degree −1, we achieve a change of sign for all
elements in πm(BG). The group πm(BG) ∼= πsm−1(S

0) is cyclic of order
2, 24, 240, for m = 2, 4, 8, respectively, see Toda [60] Ch. XIV, Hu [27]
Ch. XI. Theorem 16.4 and p. 332, or Fomenko-Fuchs-Gutenmacher [18]
p. 300. Thus we see that there are at least 1, 6, 60 distinct homotopy
types which are realized by our models, for m = 2, 4, 8. In the appendix
we prove that these numbers are the precise numbers of homotopy types
of Poincaré duality complexes (see 9.3) which look like projective planes.

Theorem 8.4. Every 1-connected Poincaré duality complex which
looks like a projective plane is homotopy equivalent to one of our models.
The homotopy type of a model Mr,s can be determined as follows. For
m = 2, there is just one model and one homotopy type, namely CP2.

If m = 4, then Mr,s 
 Mr′,s′ if and only if r + 12s ≡ ±(r′ + 12s′)
(mod 24).

If m = 8, then Mr,s 
 Mr′,s′ if and only if r + 60s ≡ ±(r′ + 60s′)
(mod 240).

9. Our set of models is complete

In this section we prove that every manifold which looks like a pro-
jective plane is homeomorphic to one of our model manifolds M(ξ) —
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except for dimension 4, where one has precisely two such manifolds,
the model manifold CP2 = M(ηC) and in addition the Chern manifold
Ch4 which is not a Thom space, see Theorem 9.1. This is covered by
Freedman’s classification [19] of closed 1-connected 4-manifolds.

Theorem 9.1. There are precisely two 1-connected closed 4-mani-
folds M with H•(M) ∼= Z3, the complex projective plane CP2 and the
Chern manifold Ch4.

Proof. This is stated in Freedman [19] pp. 370–372. Such a manifold
is represented by the odd integral symmetric bilinear form ω = (1) on
H2(M) ∼= Z and its Kirby-Siebenmann number ks[M ] ∈ Z/2. q.e.d.

From now on, we assume that m �= 2. The main result of this section
is the following.

Theorem 9.2. Let M2m be a manifold which is like a projective
plane. If m �= 2, then M is homeomorphic to one of our models M(ξ).

The proof requires surgery techniques, so we recall the relevant no-
tions. More information can be found in Madsen-Milgram [41] Ch. 2,
in Kirby-Siebenmann [33] Essay V App. B, in Wall [64] Ch. 10, and in
particular in Kreck [38]. The basic fact to keep in mind is that by the
results of Kirby-Siebenmann [33], higher dimensional surgery works well
in the topological category. The case m = 2 can in principle be handled
by similar methods, see Freedman-Quinn [20].

9.3. The spaces we are dealing with are 1-connected, and this
simplifies some points. Suppose that X is a finite and 1-connected CW-
complex. Assume moreover that there is an element [X] ∈ Hn(X) such
that the cap product induces an isomorphism

Hk(X)
�[X]

∼=
✲ Hn−k(X)

for all k. Then X satisfies Poincaré duality, and the pair (X, [X]) is what
is called a Poincaré duality complex (of formal dimension n). Every
closed, 1-connected and oriented manifold is a Poincaré duality com-
plex (we consider here only the 1-connected case; the presence of a
fundamental group requires the more complicated notion of a simple
homotopy type).

9.4. Next, recall that an h-cobordism (W ;M1,M2) is a simply con-
nected compact bordism between (simply connected) closed manifolds
M1,M2,

∂W = M1∪̇M2,
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with the property that the inclusions M1
✲ W ✛ M2 are homotopy

equivalences; an example is the product cobordism, (M × [0, 1],M ×
0,M × 1). In higher dimensions, this is in fact the only example.

9.5. h-cobordism Theorem. Every h-cobordism (W ;M1,M2)
with dim(W ) ≥ 5 is a product bordism, W ∼= M1 × [0, 1]. In particular,
there is a homeomorphism M1

∼= M2.

Proof. For dimW ≥ 6, this is proved in Kirby-Siebenmann [33], but
unfortunately not stated explicitly as a Theorem; see loc. cit. p. 113
and p. 320. For dim(W ) ≥ 7, a proof is given by Okabe [48]. The case
dim(W ) = 5 is proved in Freedman-Quinn [20], with some remarks on
the higher dimensional case. q.e.d.

9.6. Suppose now that M is a closed oriented manifold of dimension
at least 5, and that f : M ✲ X is a homotopy equivalence, with
f•[M ] = [X]. Then f is called a homotopy manifold structure on X;

two such homotopy manifold structures M1
f1✲ X ✛f2 M2 are called

equivalent if there exists an h-cobordism (W ;M1,M2) and a map F :
W ✲ X such that the diagram

M1
⊂ ✲ W ✛ ⊃ M2

❅
❅

❅
❅

❅
f1

❘ ✠�
�

�
�

�
f2

X

F

❄

commutes. This relation is transitive and symmetric; the set of all equiv-
alence classes of homotopy manifold structures on X is the structure set
STOP(X). Since we are assuming that dim(M) ≥ 5, the h-cobordism
Theorem 9.5 applies, and thus every element of STOP(X) represents a
well-defined homeomorphism type of a closed manifold homotopy equiv-
alent to X.

Let Aut(X) ⊆ [X;X] denote the group of all self-equivalences of
X. If STOP(X) is nonempty, there is a natural action of Aut(X) on
STOP(X), and the orbit set

MTOP(X) = STOP(X)/Aut(X)

can be identified with the set of all homeomorphism types of manifolds
homotopy equivalent with X.
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9.7. In order to determine the structure set STOP(X), it is conve-
nient to introduce yet another set which contains STOP(X) as a subset,
the set TTOP(X) of tangential invariants. Recall from Section 8 that
associated to a 1-connected Poincaré duality complex X is a spheri-
cal fibration, the Spivak normal bundle σX whose stable fiber homo-
topy class depends only on the homotopy type of X. Let SτM de-
note the spherical fibration of the topological tangent bundle τM . If
f : M ✲ X is a homotopy equivalence, then the spherical fibration
f∗σX ⊕ SτM is stably fiber homotopically trivial. To put it differ-
ently, f∗σX is the stable inverse of the spherical fibration Sτ(M) of
the tangent bundle in the fiber homotopy category. Let σTX be a sta-
ble inverse of σX. Then f∗σTX is stably fiber homotopy equivalent
to Sτ(M); in particular, the stable fiber homotopy type of Sτ(M) is a
homotopy invariant of M . We used this fact already in Section 8. To
make things more concrete, let us say that σTX is an N -spherical fi-
bration, for N > 2 dim(M). Then f : M ✲ X induces a bundle map
τM ⊕ RN−dim(M) ✲ f∗σTX which is a fiber homotopy equivalence.
Such a map is called a TOP reduction of f∗σTX. Two reductions are
called equivalent if they differ by a fiber homotopy equivalence; the set of
all stable TOP reductions of a spherical fibration φ is denoted RTOP(φ).
One can show that every element of STOP(X) yields a well-defined re-
duction of σT (X); this correspondence is injective, and we obtain an in-
jection STOP(X) ✲ RTOP(σTX). We call TTOP(X) = RTOP(σTX)
the set of tangential invariants of X. (Most texts consider normal in-
variants instead of tangential invariants. Since we are working in the
stable category, the difference is merely the sign. Kirby-Siebenmann
[33] use tangential invariants.)

Given a spherical fibration φ which admits a TOP reduction, it
can be shown that the abelian group [X; G/TOP] acts regularly on
RTOP(φ); thus there is a bijection of sets

TTOP(X) ∼= [X; G/TOP].

Now we can state the surgery classification of manifolds of a given homo-
topy type. So let X be a 1-connected finite Poincaré duality complex of
formal dimension n ≥ 5. There exists an abelian group Pn and a map
θ : TTOP(X) ✲ Pn, such that STOP(X) is precisely the preimage
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θ−1(0); in other words, there is an exact sequence of sets

STOP(X) ⊂ inj ✲ TTOP(X)
θ ✲ Pn

.......
.......

.......
.......

......✶

[X; G/TOP]

✻

the surgery exact sequence. The dotted arrow is in general not a group
homomorphism (and TTOP(X) has no canonical group structure). If
n = 4k ≥ 8 (the case we are interested in), then Pn ∼= Z and θ is
connected to the L-genus and the signature as

θ(ξ) =
1
8

(〈L4k(ξ), [X]〉 − Sig(X)).

In other words, a bundle ξ represents a homotopy manifold structure
for X if and only if ξ satisfies Hirzebruch’s signature theorem.

Using these techniques, the proof of Theorem 9.2 is accomplished by
the following steps.

Step 1. Every 1-connected Poincaré duality complex P (of formal
dimension 2m ≥ 5) which has the same homology as a projective plane
is homotopy equivalent to one of our models M(ξ).

Step 2. Let φ be a stable spherical fibration over a finite, 1-
connected CW-complex X with the property that Hk(X) = 0 for k �≡
0 (mod 4). Then the Pontrjagin character ph injects RTOP(φ) into
H•(X; Q). In particular, ph : TTOP(P ) ✲ H•(P ; Q) is an injection.

Step 3. For m = 4, 8, we show that the elements of STOP(P )
are completely determined by their Pontrjagin classes pm, and that all
possibilities for the pm are realized through our models M(ξ).

Step 4. We determine Aut(P ) and MTOP(P ).

9.8. In the remainder of this section, we carry out Steps 1–4.
Let P be a 1-connected Poincaré duality complex of formal dimension
2m which is like a projective plane, for m = 4, 8. So Hk(P ) ∼= Z for
m = 0, 1, 2. We fix a map

s : Sm ✲ P

representing a generator of πm(P ) ∼= Hm(P ) ∼= Z. Note also that P has
a preferred orientation [P ] — the class dual to y2m, where ym ∈ Hm(P ) ∼=
Z is any generator. Thus, any homotopy equivalence automatically
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preserves fundamental classes. By Wall [63] Proposition 4.1, we may
assume that

P = Sm ∪α e2m

is a 2-cell complex, and that m = 4, 8, see 10.1.

Proof for Step 1. This is just Theorem 8.4. However, we can say
a bit more: the results in Section 8 show that the homotopy type of
P is uniquely determined by the stable weak type of the spherical fi-
bration s∗σTP , i.e., by stable type of the pair of spherical fibrations
{s∗σTP, i∗s∗σTP}, where i : Sm ✲ Sm is any map of degree −1.

Proof for Step 2. Let φ be a stable spherical fibration over a con-
nected CW-complex X, with stable classifying map c : X ✲ BG. A
(stable) TOP-reduction of c is a lift C

BTOP

✟✟✟✟✟✟✟
C

✯

X
c ✲ BG,

fTOP
G

❄

with fTOP
G ◦C = c. Two such lifts C0, C1 are equivalent if there exists a

homotopy C : X × [0, 1] ✲ BTOP with c = fTOP
G ◦Ct for all t ∈ [0, 1],

i.e., if the homotopy is constant when projected to BG. The set of
equivalence classes of lifts of c is denoted RTOP(φ). If c is the constant
map (and thus φ = 0 is trivial), we obtain a bijection RTOP(0) ∼=
[X; G/TOP]. For η ∈ RTOP(φ) and ζ ∈ RTOP(ψ) we have η ⊕ ζ ∈
RTOP(φ ⊕ ψ). This establishes a bijection

RTOP(0) ✲ RTOP(φ)
η �−→ η ⊕ ζ

see Wall [64] Sec. 10, p. 113. Thus, we can identify RTOP(φ) with
[X; G/TOP], provided that RTOP(φ) �= ∅. Note however that RTOP(φ)
has in general no natural group structure; rather, the abelian group
[X; G/TOP] acts regularly on this set.

In general, different elements of RTOP(φ) can be equivalent when
viewed as stable bundles. From the homotopy viewpoint, this is due
to the fact that two lifts C,C ′ can be homotopic without being fiber
homotopic. We prove now that under certain conditions on X, the map
RTOP(φ) ✲ [X,BTOP] is injective.
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Proposition 9.9. Let X be a finite 1-connected CW-complex.
Assume that Hk(X) = 0 for all k �≡ 0 (mod 4). Then the natural map
[X; G/TOP] ✲ [X; BTOP] is injective.

Before we start with the proof, we note the following. By Theo-
rem 4.2, we have isomorphisms K̃O(Sk) ⊗Q ✲ K̃TOP(Sk) ⊗Q for all
k ≥ 0. By a well-known comparison theorem for half-exact cofunctors,
see Dold [12] Ch. 7, or by the Atiyah-Hirzebruch spectral sequence, see
Hilton [22] Ch. 3, this implies that

K̃O(Y ) ⊗ Q
∼=✲ K̃TOP(Y ) ⊗ Q

is a natural isomorphism of homotopy functors for every finite connected
CW-complex Y . We combine this with the Pontrjagin character ph,
which is (by the same comparison theorem for half-exact cofunctors
and by Bott Periodicity, see Section 4) rationally an isomorphism

K̃O(Y ) ⊗ Q
ph

∼=
✲ H̃4•(Y ; Q)

to obtain an isomorphism

K̃TOP(Y ) ⊗ Q
ph

∼=
✲ H̃4•(Y ; Q)

which we also denote by ph.

Proof of Proposition 9.9. It clearly suffices to show that the natural
map

[X; G/TOP] ✲ K̃TOP(X) ⊗ Q

is an injection. First we note that this is true in general for X = S4k+t,
for t = −1, 0, 1 (note that π4k±1(G/TOP) = 0, by Theorem 4.1). Both
[−; G/TOP] and K̃TOP(−) ⊗ Q are half-exact cofunctors, so injectivity
holds also for a wedge of spheres X =

∨r
1 S4k+t (this is just the additivity

of half-exact cofunctors).
For a general complex X as in the claim of Proposition 9.9, we

proceed by induction. By standard obstruction theory, we may assume
that X is complex whose cells all have dimensions divisible by 4, i.e.,
that X(4k) = X(4k+1) = X(4k+2) = X(4k+3) for all k, see Wall [63]
Proposition 4.1. So suppose that X = X(4k), and that A = X(4k−1) =
X(4k−4). The long exact sequence of the pair (X,A) shows that A
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also satisfies the hypothesis of Proposition 9.9, and by induction, we
may assume that the conclusion of the proposition holds for A. Now
consider the Puppe sequence∨

r S4k−1 ✲ A ✲ X ✲ ∨
r S4k ✲ SA ✲ · · ·

Note that K̃TOP(SA) ⊗ Q ∼= H̃4•(SA; Q) = 0, and that similarly
K̃TOP(

∨
r S4k−1) ⊗ Q = 0. We thus obtain a diagram

0 ✛ [A; G/TOP] ✛ [X; G/TOP] ✛ [
∨

r S4k; G/TOP] ✛ [SA; G/TOP]

0
❄
✛ K̃TOP(A)⊗ Q

inj

❄
✛ K̃TOP(X)⊗ Q

❄
✛ K̃TOP(

∨
r S4k)⊗ Q

inj

❄
✛ 0

inj

❄

and this implies by the Five-Lemma that [X; G/TOP] ✲ K̃TOP(X)⊗
Q is injective, see, e.g., Eilenberg-Steenrod [16] Lemma 4.4. This finishes
the proof of Proposition 9.9. q.e.d.

Corollary 9.10. Let φ be a spherical fibration over a finite 1-
connected CW-complex X, with Hk(X) = 0 for all k �≡ 0 (mod 4), and
assume that RTOP(φ) �= ∅. Then RTOP(φ) injects into K̃TOP(X) ⊗ Q
and, via the Pontrjagin character, into H̃4•(X; Q).

Proof. Let ζ ∈ RTOP(φ) be a stable bundle. By Proposition 9.9, the
Pontrjagin character injects RTOP(0) into H̃4•(X; Q). The diagram

RTOP(0)
[η �−→ η + ζ]

bij
✲ RTOP(φ)

H̃4•(X; Q)

inj ph

❄
[x �−→ x + ph(ζ)]

bij
✲ H̃4•(X; Q)

ph

❄

commutes, and the claim follows. q.e.d.

Corollary 9.11. Let X be a finite 1-connected Poincaré duality
complex, and assume that Hk(X) = 0 for all k �≡ 0 (mod 4). Then the
Pontrjagin character ph injects the set TTOP(X)of tangential invariants
into H̃4•(X; Q). q.e.d.
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This corollary applies in particular to our Poincaré duality complex
P of formal dimension 2m, for m = 4, 8. Note also the following. If
η, ζ ∈ RTOP(φ) are elements with the same total Pontrjagin class,
p(η) = p(ζ), then clearly ph(η) = ph(ζ). Therefore, the total Pontrjagin
class p induces also an injection of RTOP(φ) into H̃4•(X; Q).

Proof for Step 3. We use the same symbols P , ym, y2m, s as in
9.8. Since Sig(P ) = 1, a stable TOP-bundle reduction ζ ∈ TTOP(P )
represents a homotopy manifold structure for P if and only if

L2m(ζ) = y22m.

Also, we see from the formula for the L-genus 4.6 that there are rational
numbers cm, dm (depending only on m) such that

p2m(η) = cmL2m(η) + dmpm(η)2

for any stable bundle η over P .

Lemma 9.12. The map TTOP(P ) ✲ Hm(P ; Q), ζ �−→ pm(ζ) is
an injection when restricted to STOP(P ) ⊆ TTOP(P ).

Proof. Let η, ζ be elements in TTOP(X) representing homotopy man-
ifold structures, so L2m(η) = y2m = L2m(ζ). If pm(η) = pm(ζ), then
p2m(η) = p2m(ζ) by the formula above. Thus p(η) = p(ζ), whence
ph(η) = ph(ζ), and therefore η = ζ by Corollary 9.10. q.e.d.

Now we prove that our set of model manifolds realizes all elements
in STOP(P ). Let φ = s∗σTP .

Lemma 9.13. Let ζ ∈ RTOP(φ). Then there exists an Rm-bundle
ξ over Sm with absolute Euler number |e| = 1 which is stably equivalent
to ζ.

Proof. We have wm(ζ) = x mod 2 (because wm(Mr,s) = ym mod
2 for any model). From the split exact sequence in Lemma 6.2 we see
that we can find an Rm-bundle ξ over Sm with wm(ξ) = x mod 2, and
hence with any odd absolute Euler number. q.e.d.

Corollary 9.14. For m = 4, 8, all elements of STOP(X) are realized
as model manifolds M(ξ).

Proof. Given a stable bundle η ∈ TTOP(P ) representing a homotopy
manifold structure M ✲ X in STOP(X), we can find by Lemma 9.13
an oriented Rm-bundle ξ over Sm which is stably equivalent to s∗η,



projective planes and their look-alikes 47

with absolute Euler number |e| = 1. Then the model manifold M(ξ)
is homotopy equivalent to P by the remark in Step 1, because the ho-
motopy types of P and M(ξ) are determined by s∗σTP and s∗0σTM(ξ),
respectively. Composing the homotopy equivalence M(ξ) 
 P with a
self-homeomorphism of M(ξ) induced by a homeomorphism of degree
−1 of Sm, if necessary, we obtain a homotopy commutative diagram

Sm
s ✲ P

❅
❅
❅s0 ❘ ✠�

�
�f



M(ξ).

By Lemma 9.12, M(ξ) is precisely the homotopy manifold structure on
P represented by η, because f•pm(M) = pm(η), so M ∼= M(ξ). q.e.d.

This finishes Step 3.

Proof for Step 4. We proved already in Proposition 3.4 that M(ξ) ∼=
M(ξ′) if and only if ξ and ξ′ are weakly equivalent. The group Aut(M(ξ))
is cyclic of order two by Lemma 10.5, and this finishes the classification
for m = 4, 8.

10. Appendix: Homotopy classification

In this section, all maps and homotopies are assumed to preserve
base points.

10.1. Suppose that X is a 1-connected Poincaré duality complex
of formal dimension n, with H•(X) ∼= Z3 (9.3). Let µ ∈ Hn(X) denote
the fundamental class. We have H0(X) ∼= Z ∼= Hn(X), so Hm(X) ∼= Z
for some number 1 < m < n. By the universal coefficient theorem, see
Spanier [55] Ch. 5.5 Theorem 4, we have Hj(X) ∼= Hj(X) for all j.
From Poincaré duality, we see that n = 2m, and that the map

Hm(X) ⊗ Hm(X) ✲ Z, u ⊗ v �−→ 〈u(v, µ〉

is a duality pairing. Thus m is even, and H•(X) ∼= Z[ym]/(y3m), for some
generator ym ∈ Hm(X). By Wall [63] Proposition 4.1, the CW-complex
X is homotopy equivalent to a 2-cell complex,

X 
 Xα = Sm ∪α e2m,
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for some attaching map α : S2m−1 ✲ Sm. By Adams-Atiyah [2]
Theorem A, this implies that m = 2, 4, 8. Note also that Xα has a
preferred orientation µ, the dual of y2m.

10.2. We wish to determine the number of homotopy types of such
complexes X. The structure of the cohomology ring of Xα implies that
α, viewed as an element of π2m−1(Sm), has Hopf invariant h(α) = ±1,
see Adams-Atiyah [2] and Husemoller [30] Ch. 20.10. Note also that the
homotopy type of Xα is not changed if α is replaced by a map homotopic
to α, see Milnor [45] Lemma 3.6. Let Wm denote the set of all homotopy
types of 1-connected CW-complexes as above. Let H±1

m ⊆ π2m−1(Sm)
denote the set of all elements of Hopf invariant ±1. We thus have a
well-defined surjection

π2m−1(Sm) ⊇ H±1
m

✲ Wm,

sending α ∈ H±1
m to the homotopy type of Xα. By Adams-Atiyah [2]

Theorem A, the set Wm is empty unless m = 2, 4, 8.
Next we note the following. If c : S2m−1 ✲ S2m−1 is an involution

of degree −1, then there is a homeomorphism Xα
∼= Xα◦c. Since α ◦ c

represents −α ∈ π2m−1(Sm), we have a homotopy equivalence

Xα 
 X−α.

Each element in Wm is thus represented by a element α ∈ π2m−1(Sm)
with Hopf invariant h(α) = 1, i.e., H+

m surjects onto Wm.

For m = 2, we are done: π3(S2) ∼= Z, see Toda [60] p. 186, so H±
2

has exactly two elements, and W2 consists of precisely one homotopy
type, the complex projective plane CP2.

Lemma 10.3. There is exactly one homotopy type in W2.

10.4. It remains to consider the cases m = 4, 8. Similarly as
above, if g : Sm ✲ Sm is an involution of degree −1, then there is a
homeomorphism Xα

∼= Xg◦α, so

Xα 
 Xg#(α).

The homotopy equivalences

Xα 
 X−α 
 Xg#(α) 
 X−g#(α)

are in fact the only homotopy equivalences which occur between these
2-cell complexes. For suppose that f : Xα

�✲ Xβ is a homotopy
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equivalence. We may assume that f is a cellular map, see Whitehead
[66] Ch. II Theorem 4.5,

f : (Xα,S
m) ✲ (Xβ,S

m),

and then f restricts to a map of degree ±1 on the m-skeleton Sm. Also,
we have the Hurewicz isomorphism

H2m(S2m) = H2m(Xα/Sm) ∼= H2m(Xα,S
m) ∼= π2m(Xα,S

m) ∼= Z;

a canonical generator α̂ of this group π2m(Xα,Sm) is given by the at-
taching map,

(e2m,S2m−1)
α̂✲ (Xα,S

m) with ∂α̂ = α.

From the homotopy exact sequence

✲ π2m(Sm) ✲ π2m(Xα) ✲ π2m(Xα,S
m)

∂✲ π2m−1(Sm) ✲

✲ π2m(Sm)
❄

✲ π2m(Xβ)
❄

✲ π2m(Xβ ,S
m)

❄ ∂✲ π2m−1(Sm)
❄

✲

and the Five-Lemma, we see that f#(α̂) = ±β̂, and so f#(α) = ±β.
We have seen above that we may replace Xβ by X−β; thus, we may
assume that f#(α) = β. If f restricts to a map of degree 1 on Sm, then
f#(α) = α = β.

Lemma 10.5. The group of self-equivalences Aut(Xα) is cyclic of
order 2; it coincides with the group of graded ring automorphisms of the
cohomology ring Z[ym]/(y3m).

10.6. So the remaining problem is to determine the relation be-
tween α and g#(α), where g : Sm ✲ Sm is a map of degree −1.
Towards this end, we consider the EHP -sequence of Sn for the values
n = m − 1,m,

✲ πk(Sn)
E✲ πk+1(Sn+1)

H✲ πk+1(S2n+1)
P✲ πk−1(Sn)

E✲

This sequence is exact for k ≤ 3n − 2, see Whitehead [66] Ch. XII
Theorem 2.2. Here, E is the suspension and H is the generalized Hopf
invariant. Let ιj = idSj denote the canonical generator of πj(Sj). For
ρ ∈ π2n+1(Sn), one has H(ρ) = h(ρ) · ι2n+1; see Whitehead [66] for a
comparison between the various definitions of Hopf invariants.
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10.7. Consider the diagram

0

π2m−1(S2m−1)
E2

∼=
✲ π2m+1(S2m+1)

❄

❅
❅

❅
❅

·2
❘

0 ✲ π2m−2(Sm−1)
E✲ π2m−1(Sm)

P

❄ H✲ π2m−1(S2m−1) ✲ 0

❅
❅

❅
❅❘

π2m(Sm+1)

E

❄

0.
❄

The middle row is split and short exact: π2m−1(S2m−1) is infinite cyclic
(whence the splitting) and the Hopf invariant H is by assumption onto.
The map P : π2m(S2m−1) ✲ π2m−2(Sm−1) can be characterized by
PE2(ρ) = [ιm−1, ιm−1] ◦ ρ, see Whitehead [66] Ch. XII Theorem 2.4.
But Sm−1 is an H-space for m = 4, 8, so [ιm−1, ιm−1] = 0, see White-
head [66] Ch. X Corollary 7.8. From the EHP sequence, we see that

π2m−2(Sm−1)
E✲ π2m−1(Sm) is an injection.

The middle column is also short exact: from Freudenthal’s Sus-
pension Theorem we have that E : π2m−1(Sm) ✲ π2m(Sm+1) is an
epimorphism, see Whitehead [66] Ch. VII Theorem 7.13. To see that
P : π2m+1(S2m+1) ✲ π2m−1(Sm) is injective, note that PE2(ι2m−1) =
[ιm, ιm] by Whitehead [66] Ch. XII Theorem 2.4. But

H([ιm, ιm]) = 2ι2m−1,

see Whitehead [66] Ch. XI Theorem 2.5. Thus, P is injective on this
infinite cyclic group.

10.8. So suppose that g : Sm ✲ Sm has degree −1. Then

g#([ιm, ιm]) = [g#(ιm), g#(ιm)] = [−ιm,−ιm] = [ιm, ιm],
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whence

H(g#(ξ)) = H(ξ) for all ξ ∈ π2m−1(Sm).

Now let ρ ∈ π2m−2(Sm−1). This group is finite by Serre’s finiteness
result for odd spheres, see Spanier [55] Ch. 9.7 Theorem 7; via E, we can
identify it with the torsion group of π2m−1(Sm). The double suspension
E2 injects this group into the stable group π2m(Sm+1) = πsm−1(S

0).
In the graded ring πs•(S0), composition is commutative, see Whitehead
[66] Ch. XII; thus we have E(g#(Eρ)) = −E2(ρ), whence g#(E(ρ)) =
−E(ρ). The involution g# thus changes the signs of the elements of the
torsion group of π2m−1(Sm).

The stable groups πsm−1(S
0) are cyclic of order 24 and 240, for

m = 4, 8, see Toda [60] p. 186. The image of the double suspension
E2 is also cyclic and has index 2 in this group. Thus, if ξ ∈ π2m−1(Sm)
is an element with Hopf invariant 1, then the element E(ξ) together with
the cyclic group E2(π2m−2(Sm−1)) generates π2m+2(Sm+1) ∼= πsm−1(S

0).
Therefore, we can find an element ηm ∈ π2m−1(Sm) with Hopf invari-
ant h(ηm) = 1 whose suspension E(ηm) generates π2m(Sm+1). Let
δm = 2ηm − [ιm, ιm]; then E(δm) = 2 ·E(ηm) generates the cyclic group
E2(π2m−2(Sm−1)) (the suspension of the Whitehead product [ιm, ιm]
vanishes, see Whitehead [66] Ch. X Theorem 8.20), so δm generates the
torsion group of π2m−1(Sm). Put g#(ηm) = ηm + r · δm. Now

−δm = g#(δm) = g#(2ηm − [ιm, ιm])
= 2ηm + 2r · δm − [ιm, ιm] = (1 + 2r) · δm,

whence 2(1 + r)δm = 0. This leaves two possibilities for r, for m = 4, 8.
But due to the commutativity of πs•(S0), we have also E(g#(ηm)) =
−E(ηm) = E(ηm) + r · E(δm) = (1 + 2r)E(ηm), which implies that
r = −1, i.e., that

g#(ηm) = ηm − δm.

We have proved the following result.

Proposition 10.9. The number of homotopy types in Wm is 1, 6,
60, for m = 2, 4, 8.

This is a complete homotopy classification of manifolds and com-
plexes which are like projective planes, and also the end of this paper.



52 l. kramer

References

[1] J.F. Adams, On the groups J(X)–IV, Topology 5 (1966) 21–71, MR 33 #6628,
Zbl 0145.19902.

[2] J.F. Adams & M.F. Atiyah, K-theory and the Hopf invariant, Quart J. Math.
Oxford 17 (1966) 31–38, MR 33 #6618, Zbl 0136.43903.

[3] M.F. Atiyah & F. Hirzebruch, Vector bundles and homogeneous spaces, Proc.
Symp. Pure Math. 3 (1961) 7–38, MR 25 #2617, Zbl 0108.17705.

[4] R. Bott, The stable homotopy of the classical groups, Ann. Math. 70 (1959)
313–227,

[5] R. Bott, The periodicity theorem for the classical groups and some of its applica-
tions, Adv. Math. 4 (1970) 353–411, MR 41 #4533, Zbl 0231.55010.

[6] U. Brehm & W. Kühnel, 15-vertex triangulations of an 8-manifold, Math. Ann.
294 (1992) 167–193, MR 94e:57033, Zbl 0734.57017.

[7] S. Breitsprecher, Projektive Ebenen, die Mannigfaltigkeiten sind, Math. Z. 121
(1971) 157–174, MR 43 #6935, Zbl 0229.50021.

[8] G. Brumfiel, On the homotopy groups of BPL and PL/O, Ann. Math. 88 (1968)
291–311, MR 38 #2775, Zbl 0162.27302.

[9] T. Buchanan, Zur Topologie der projektiven Ebenen über reellen Divisionsalgebren,
Geom. Ded. 8 (1979) 383–393, MR 81m:51023, Zbl 0414.51008.

[10] H. Cartan & S. Eilenberg, Homological algebra, Princeton University Press, Prince-
ton, New Jersey, 1956, MR 17,1040e, Zbl 0075.24305.

[11] A. Dold, Partitions of unity in the theory of fibrations, Ann. Math. 78 (1963)
223–255, MR 27 #5246, Zbl 0203.25402.

[12] A. Dold, Halbexakte Homotopiefunktoren, Springer LNM, 12, Springer-Verlag,
1966, MR 33 #6622, Zbl 0136.00801.

[13] A. Dold, Lectures on algebraic topology, Springer Verlag, Berlin Heidelberg New
York, 1972, MR 54 #3685, Zbl 0234.55001.

[14] J. Eells & N.H. Kuiper, Manifolds which are like projective planes, Publ. Math.
I.H.E.S. 14 (1962) 5–46, MR 26 #3075, Zbl 0109.15701.

[15] J. Eells & N.H. Kuiper, An invariant for certain smooth manifolds, Ann. Mat.
Pura Appl. 60 (1962) 93–110, MR 27 #6280, Zbl 0119.18704.

[16] S. Eilenberg & N. Steenrod, Foundations of algebraic topology, Princeton Univer-
sity Press, Princeton, New Jersey, 1952, MR 14,398b, Zbl 0047.41402.

[17] R. Engelking, Theory of dimensions, finite and infinite, Heldermann, Lemgo,
1995, MR 97j:54033 zbl0872.54002.

http://www.ams.org/mathscinet-getitem?mr=97j:54033
http://www.emis.de/cgi-bin/MATH-item?0047.41402
http://www.ams.org/mathscinet-getitem?mr=14:398b
http://www.emis.de/cgi-bin/MATH-item?0119.18704
http://www.ams.org/mathscinet-getitem?mr=27:6280
http://www.emis.de/cgi-bin/MATH-item?0109.15701
http://www.ams.org/mathscinet-getitem?mr=26:3075
http://www.emis.de/cgi-bin/MATH-item?0234.55001
http://www.ams.org/mathscinet-getitem?mr=54:3685
http://www.emis.de/cgi-bin/MATH-item?0136.00801
http://www.ams.org/mathscinet-getitem?mr=33:6622
http://www.emis.de/cgi-bin/MATH-item?0203.25402
http://www.ams.org/mathscinet-getitem?mr=27:5246
http://www.emis.de/cgi-bin/MATH-item?0075.24305
http://www.ams.org/mathscinet-getitem?mr=17:1040e
http://www.emis.de/cgi-bin/MATH-item?0414.51008
http://www.ams.org/mathscinet-getitem?mr=81m:51023
http://www.emis.de/cgi-bin/MATH-item?0162.27302
http://www.ams.org/mathscinet-getitem?mr=38:2775
http://www.emis.de/cgi-bin/MATH-item?0229.50021
http://www.ams.org/mathscinet-getitem?mr=43:6935
http://www.emis.de/cgi-bin/MATH-item?0734.57017
http://www.ams.org/mathscinet-getitem?mr=94e:57033
http://www.emis.de/cgi-bin/MATH-item?0231.55010
http://www.ams.org/mathscinet-getitem?mr=41:4533
http://www.emis.de/cgi-bin/MATH-item?0108.17705
http://www.ams.org/mathscinet-getitem?mr=25:2617
http://www.emis.de/cgi-bin/MATH-item?0136.43903
http://www.ams.org/mathscinet-getitem?mr=33:6618
http://www.emis.de/cgi-bin/MATH-item?0145.19902
http://www.ams.org/mathscinet-getitem?mr=33:6628


projective planes and their look-alikes 53

[18] A.T. Fomenko, D.B. Fuchs & V.L. Gutenmacher, Homotopic topology, Akadémiai
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[65] C. Weber, Quelques théoremes bien connus sur les A.N.R et les C.W. complexes,
Enseign. Math. 13 (1968) 211–222, MR 40 #6533, Zbl 0157.30002.

[66] G.W. Whitehead, Elements of homotopy theory, Springer-Verlag New York Berlin
Heidelberg, 1978, MR 80b:55001, Zbl 0406.55001.

[67] R.E. Williamson, Jr., Cobordism of combinatorial manifolds, Ann. Math. 83

(1966) 1–33, MR 32 #1715, Zbl 0137.42901.

Mathematisches Institut
Universität Würzburg

Am Hubland
D-97074 Würzburg

Germany

http://www.emis.de/cgi-bin/MATH-item?0137.42901
http://www.ams.org/mathscinet-getitem?mr=32:1715
http://www.emis.de/cgi-bin/MATH-item?0406.55001
http://www.ams.org/mathscinet-getitem?mr=80b:55001
http://www.emis.de/cgi-bin/MATH-item?0157.30002
http://www.ams.org/mathscinet-getitem?mr=40:6533
http://www.emis.de/cgi-bin/MATH-item?0935.57003
http://www.ams.org/mathscinet-getitem?mr=2000a:57089
http://www.emis.de/cgi-bin/MATH-item?0152.21902
http://www.ams.org/mathscinet-getitem?mr=30:1515
http://www.emis.de/cgi-bin/MATH-item?0218.57022
http://www.ams.org/mathscinet-getitem?mr=26:3071
http://www.emis.de/cgi-bin/MATH-item?0319.55026
http://www.ams.org/mathscinet-getitem?mr=54:13931
http://www.emis.de/cgi-bin/MATH-item?0101.40703
http://www.ams.org/mathscinet-getitem?mr=26:777
http://www.emis.de/cgi-bin/MATH-item?0784.53029
http://www.ams.org/mathscinet-getitem?mr=99i:57033
http://www.emis.de/cgi-bin/MATH-item?0561.57021
http://www.ams.org/mathscinet-getitem?mr=88f:57061
http://www.emis.de/cgi-bin/MATH-item?0054.07103
http://www.ams.org/mathscinet-getitem?mr=12:522b
http://www.emis.de/cgi-bin/MATH-item?0185.50904
http://www.ams.org/mathscinet-getitem?mr=35:4923
http://www.emis.de/cgi-bin/MATH-item?0145.43303
http://www.ams.org/mathscinet-getitem?mr=35:1007
http://www.emis.de/cgi-bin/MATH-item?0099.39202
http://www.ams.org/mathscinet-getitem?mr=25:580
http://www.emis.de/cgi-bin/MATH-item?0145.20303
http://www.ams.org/mathscinet-getitem?mr=20:2715
http://www.emis.de/cgi-bin/MATH-item?0851.51003
http://www.ams.org/mathscinet-getitem?mr=79b:51009

